

PN16

Filtración | Filtros de brida CLEARPOINT® 3eco

CLEARPOINT® 3eco, la nueva generación de filtros de brida de alto rendimiento y energéticamente eficiente

Mejor rendimiento en la separación de aerosoles de aceite

Con la nueva generación de filtros de aire comprimido CLEARPOINT® 3eco hemos mejorado nuestras soluciones para la filtración eficiente del aire comprimido y hemos podido aumentar las tasas de separación de aerosoles de aceite hasta 10 veces más. Al mismo tiempo se ha podido reducir la presión diferencial hasta un 50 % y a su vez se ha optimizado claramente la eficiencia energética. Por ello los hemos distinguido con nuestra etiqueta ECO.

Eficiencia energética y filtración segura del aire comprimido

Gracias a innovadores materiales, a la aplicación de mejoras tecnológicas en nuestros procesos de producción y a una carcasa diseñada para un flujo optimizado y a prueba de corrosión, CLEARPOINT® 3eco ofrece una filtración segura y fiable para un aire comprimido de mejor calidad con una reducción clara de los costes de servicio.

Tres grados de filtración cumplen con todos los requisitos

Debido al alto rendimiento de separación ahora es posible cubrir todos los requisitos de la filtración del aire comprimido con solo 3 grados de filtración: C (grueso), F (fino) y S (super fino). Por supuesto, los 3 nuevos filtros eco han sido validados por el instituto independiente IUTA conforme a ISO 12500.

> Filtración de alto rendimiento

- Tasa de separación de aerosol de aceite hasta 10 veces mayor
- > Elevada seguridad de proceso
- Filtración eficiente. Entre 30 % y 111 %
 del caudal volumétrico energéticamente eficiente

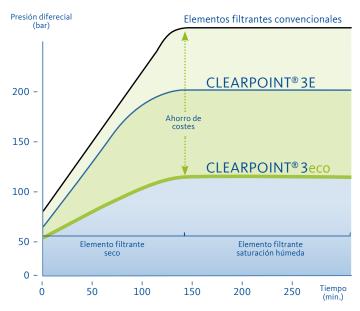
> Eficiencia energética óptima

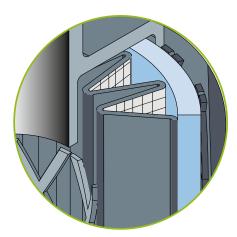
- > Presión diferencial muy reducida
- > Descenso de los costes de energía y de servicio

> Orientado a la aplicación

- Con solo 3 grados de filtración se cumplen todos los requisitos de la filtración del aire comprimido
- Montaje y mantenimiento sencillos
- › Servicio fiable
- Rango de rendimiento de 1.420 hasta 34.680 m³/h a 7 bar

> Carcasa de filtro acreditada

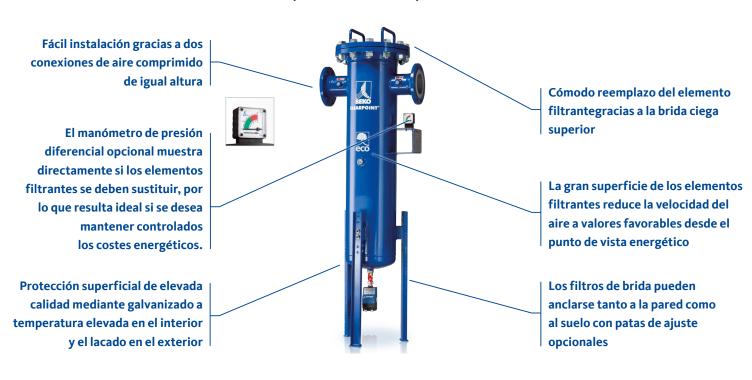

- > De alta calidad, segura y duradera
- Protección anticorrosión mediante galvanizado a alta temperatura
- > Sustitución rápida de los elementos filtrantes


CLEARPOINT® 3eco. Costes de servicio reducidos mediante presión diferencial optimizada

El factor decisivo en los costes del ciclo de vida de los filtros de aire comprimido es el consumo energético que se genera mediante la presión diferencial. En los nuevos elementos filtrantes CLEARPOINT® 3eco esta presión diferencial es especialmente baja.

Los nuevos filtros CLEARPOINT® 3 eco reducen aun más los costes de servicio frente a los anteriores filtros CLEARPOINT® 3E, que ya eran buenos. El ahorro energético por año es más alto que los costes de adquisición de los elementos filtrantes.

Con los filtros CLEARPOINT® 3eco los costes de servicio se reducen. El gráfico muestra los datos del el filtro de brida con grado de filtración S y caudal volumétrico optimizado energéticamente.



Mejoras en los procedimientos de fabricación y materiales novedosos lo hacen posible

El aumento notable de rendimiento en los filtros CLEARPOINT® 3eco ha sido posible gracias a materiales de última generación. La innovadora malla de plástico abierta en el lado exterior del medio filtrante proporciona la rigidez necesaria de las distintas capas del filtro, sin reducir la superficie filtrante.

El nuevo procedimiento de fabricación mediante la tecnología Softpleat permite la unión óptima de muchas superficies y una profundidad del lecho filtrante elevada. Estas características permiten una la separación muy eficiente de partículas y de los aerosoles de aceite.

Carcasa del filtro diseñada para un uso práctico

CLEARPOINT® 3eco PN 16: Filtro de brida L080 - L304

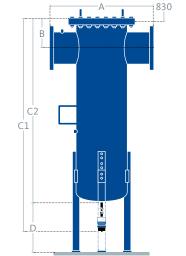
	Modelo		L080	L100	L102	L150	L156	L200	L204	L254	L304			
	PN16 DIN 2633		DN80	DN100	DN100	DN150 DN150		DN200	DN200	DN250	DN300			
	Presión de servic máx. (bar [ü])	io		16 10 (16 bar Disponible opciona										
optimización energética	Caudal volumétrico 7 bar (m³/h),		1420	2840	4260	5680	9940	9940 11360		19880	31240			
izaciór	Presión diferencial en bar (saturación húmeda)	Grado C	ø 50 bar											
optim		Grado F												
Con		Grado S ø 110 bar												
Orientado al rendimiento	Caudal volumétri 7 bar (m³/h),	ico*	1580	3160	4740	6320	11060	12640	15800	22120	34680			
o al re	Presión diferen- cial en bar (saturación hú- meda)	Grado C	ø 70 bar											
entad		Grado F	ø 125 bar											
Ö		Grado S	ø 125 bar											
Vol	umen (I) so (Kg)		22	40	63	66	95	120	160	265	407			
Pes			58	68	93	120	130	160	175	260	365			
	egoría según PED97 po de fluido 2	Ш	н н н			II	III	III	III	IV				

		Aerosoles de aceite		Parti		
Grado de filtración	Cuota de separación para aerosoles de aceite	Concentración de entrada (mg/m³)	Concentración de salida (mg/m³)	Separación de par- tículas	Tamaño de partícula	Clase según ISO 8573-1
Filtro grueso C	84,00%	30	≤ 5	99,00%	2,0-5,0 μm	44
Filtro fino F	99,50%	10	0,05	99,83%	0,5 - 2,0 μm	22
Filtro super fino S	99,95%	99,95% 10		99,98%	0,1-0,5 μm	12*

Datos de medida en mm	Datos de medida en mm													
А	490	540	540	600	600	710	710	880	990					
В	173	200	208	233	238	273	273	246	312					
C1	1350	1399	1420	1470	1478	1553	1570	1607	1750					
C2	1134	1183	1204	1254	1262	1337	1354	1391	1534					
D	330	330	460	460	460	460	460	460	460					

^{*} Para alcanzar la clase 1.-.1 se requiere por regla general un filtro de polvo y de carbón activo adicional dado que los filtros de coalescencia no pueden retener los vapores de aceite.

Resistencia a la temperatura del elemento filtrante: 100 °C saturado de humedad/ 120 °C seco Filtración efectiva a partir de 30 % del caudal volumétrico nominal/energéticamente eficiente

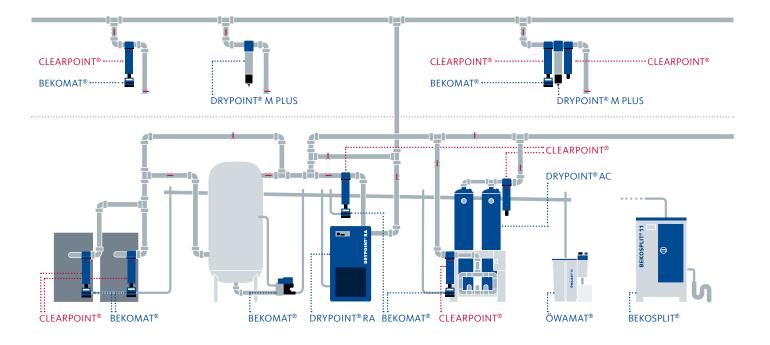

Grado de filtración	C (grueso)	F (fino)	S (super fino)
Presiones diferencia- les iniciales seco	30 bar	50 bar	60 bar

Ejemplo de cálculo para el tamaño de filtro necesario si se aplica ≠ 7 bar [g]:

Caudal volumétrico: 4200 m³/h Presión de servicio: 5 bar [g] Factor de corrección: 0,84

 $> 4200 \text{ m}^3/\text{h} / 0,84 = 5000 \text{ m}^3/\text{h} (7 \text{ bar [g]})$

» Tamaño de filtro necesario: L150


Factores de corrección:

bar	0,3	0,6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Factor de corrección	0,21	0,29	0,38	0,53	0,65	0,76	0,84	0,92	1	1,07	1,13	1,19	1,25	1,31	1,36	1,41	1,46	1,51

Un sistema para la calidad exigida del aire comprimido

En BEKO TECHNOLOGIES desarrollamos, fabricamos y distribuimos en todo el mundo productos y sistemas dirigidos a optimizar la calidad del aire y los gases comprimidos. Desde el tratamiento del aire y los gases comprimidos por filtración y secado, pasando por una tecnología de tratamiento de condensados de eficacia demostrada, hasta instrumentos de medición y de control de calidad. Desde la aplicación más sencilla del aire comprimido hasta la tecnología de procesos más exigente.

Fundada en 1982, **BEKO** TECHNOLOGIES no ha parado de impulsar el desarrollo de la tecnología de aire comprimido. Nuestras ideas pioneras ha influido decisivamente en el progreso del sector. Para que esto siga así, más de un 10% de nuestros empleados desarrolla sus actividades en el área de innovación. Esta competencia, unida a nuestro compromiso personal son los que nos ayudan en **BEKO** TECHNOLOGIES a crear tecnologías, productos y servicios innovadores.

¿Tiene usted alguna otra pregunta sobre la preparación óptima de su aire comprimido?

En ese caso, ¡tenemos las respuestas! Y soluciones adecuadas en todo lo referente a la cadena de preparación. Esperamos saber de usted y poder presentarle nuestros productos de los sectores del

tratamiento de condensados, filtración, secado, tecnología de medición y tecnología de procesos, así como nuestros amplios servicios.

Visit us on

BEKO Tecnológica España S.L.

C/ Torruella i Urpina, 37-42 nave 6 08758 Cervelló - Barcelona Telf. 936 327 668 info.es@beko-technologies.es www.beko-technologies.es

