Panasonic

Panasonic Products for Energy Management

1st edition

Products for Energy Management

Products for Energy Management P.2

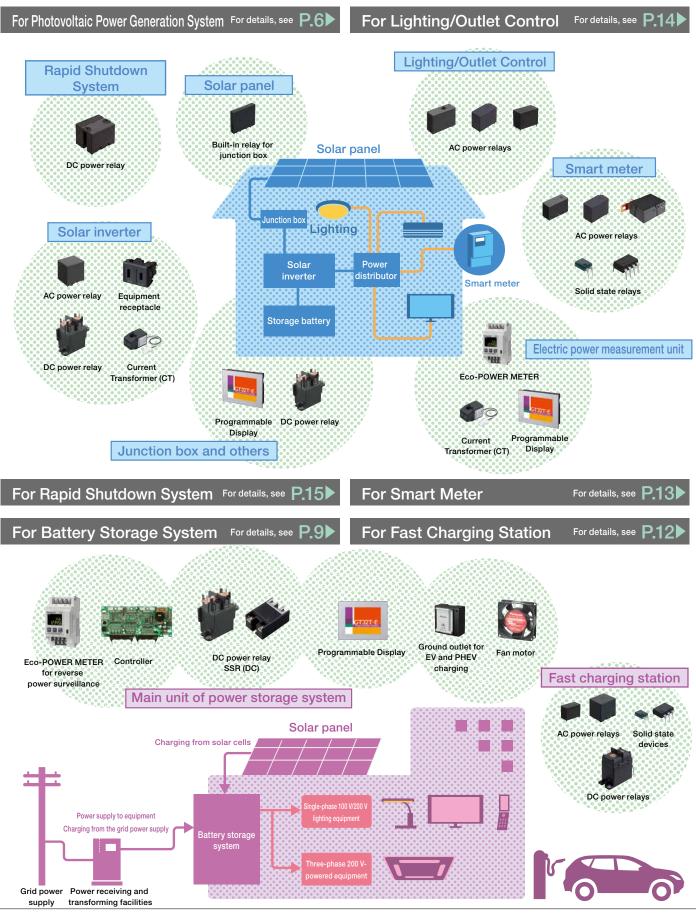
Application example	Ρ.	2
Product examples for specific applications	Р.	3

New Product Introduction ······P.5

Application Introduction P.6

Photovoltaic Power Generation System	P. 6
Battery Storage System ·····	P. 9
Fast Charging Stations	P.12
Smart Meter ·····	P.13
Lighting/Outlet Control ·····	P.14
Rapid Shutdown System ·····	P.15

Product Features ······ P.16

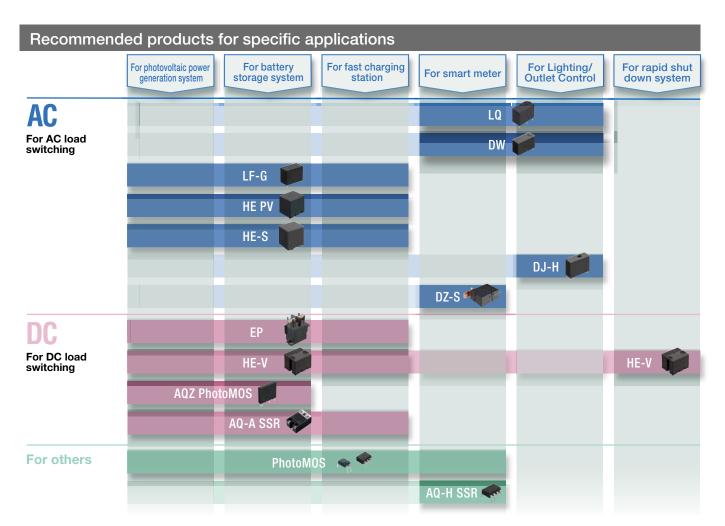

PhotoMOS / SSR AQ-A ·····	P.16
LF-G/HE-S/HE relay PV ·····	P.17
HE-S relay ·····	P.18
HE-V relay ·····	P.19
DJ-H relay ·····	P.21
EP relay ·····	P.22

Reference data P.23

HE-V relay/EP relay estimated life (cycles)	P.23
EP relay expected life (cycles)	P.24
DC load switching capacity on AC load relay	P.25

Products for Energy Management

Application example



-2-

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

Products for Energy Management

Product examples for specific applications

For AC Load Switching

Product name	LQ	DW	LF-G ∗1	HE-S	HE PV *1	DJ-H	DZ-S
Appearance							
Contact arrangement	1 Form A/1 Form C	1 Form A	1 Form A	2 Form A/ 2 Form A 1 Form B	1 Form A	1 Form A	1 Form A
Max. 50A switching 30A capacity 20A 5A	10A 125V AC 1a, 1c (N.O.) 1a, 1c (N.O.)	16A 277V AC BA 250V AC Standard Inrush type	31A 250V AC 33A 250V AC 22A 250V AC High High Standard capacity bpe bpe (1.5mm) (1.8mm)	35A 277V AC	90A 277V AC 48A 277V AC 90A type 35A 277V AC 48A type	50A 277V AC	90A 250V AC
Latching type availability	-	•	-	-	-	•	•
Rated operating power	0.2W(1a)	0.2W(1L) 0.4W(2L)	1.4W (when input) 0.17W (when retained)	1.88W (when input) 0.17W (when retained)	1.92W (when input) 0.31W (when retained)	1.0W(1L) 2.0W(2L)	1.5W(1L) 3.0W(2L)
Max. allowable voltage	250V AC	250V AC	250V AC	277V AC	277V AC	480V AC	276V AC
Contact gap	-	-	1.5mm/1.8mm	3.2mm *2	2.5mm/3.0mm	-	-
Ambient temperature	-40 to +85℃	-40 to +85℃	−40 to +85°C	-40 to +85℃	−50 to +85°C	-40 to +85℃	-40 to +85°C
Safety standards	UL/C-UL, VDE	UL/C-UL, VDE	UL/C-UL, VDE	UL/C-UL, VDE	UL/C-UL, VDE	UL, VDE	Please contact our sales representative for details.

*1 LF-G relays and HE relays PV type are not compliant with electrical safety laws. For compliant types, please contact our sales representative. *2 Contact gap for each between 1 Form A contacts

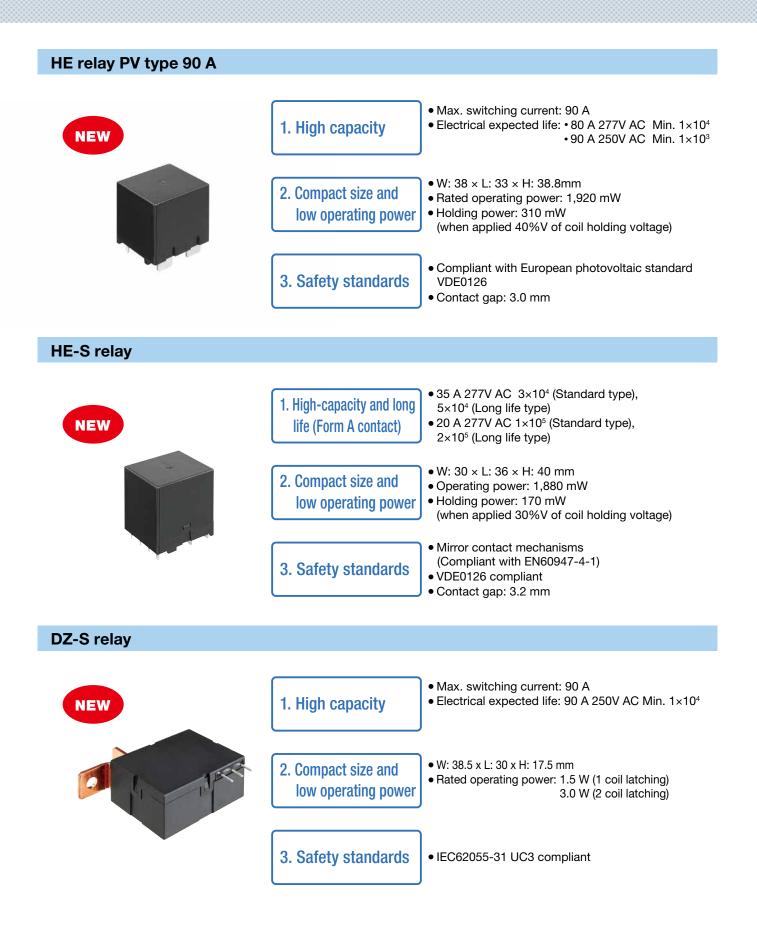
Panasonic Corporation Electromechanical Control Business Division

industrial.panasonic.com/ac/e/

For DC Load Switching

Product name			EP			HE-V	AQZ PhotoMOS	AQ-A SSR
Appearance	104	20A	80A	200A	300A			No. of the second se
Contact arrangement			1 Form A	N .		2 Form A	1 Form A	1 Form A
300A 200A 100A switching 40A 30A capacity 10A 5A	10A 400V DC	20A 400V DC	80A 400V DC	200A 400V DC	300A 400V DC	20A 20A 25A 800V DC*1 400V DC*2 600V DC*2	10A 60V DC 5A 200V DC	30A 100V DC
Rated operating power	1.24W	3.9W	4.2W	6W (when input) 1.5W (when retained)	45W (when input) 4W (when retained)	1.9W (when input) 0.2W (when retained)	0.01W (Input current: 10 mA)	0.08-0.64W (Input voltage: 4 to 32 V)
Max. allowable voltage			1,000V D	С		1,000V DC	60V DC 200V DC	100VDC 600VDC
Contact gap		(Capsi	ule contact cor	nstruction)		3.8mm (for 1 Form A)	No contact	No contact
Ambient temperature			-40 to +80)°C		-40 to +85℃	−40 to +85°C	–20 to +80°C
Safety standards	UL/C-UL	_(20A type:	only UL)	-	-	UL/C-UL, VDE	UL/C-UL, VDE (Please contact our sales representative for details.)	UL/C-UL, VDE (Please contact our sales representative for details.)

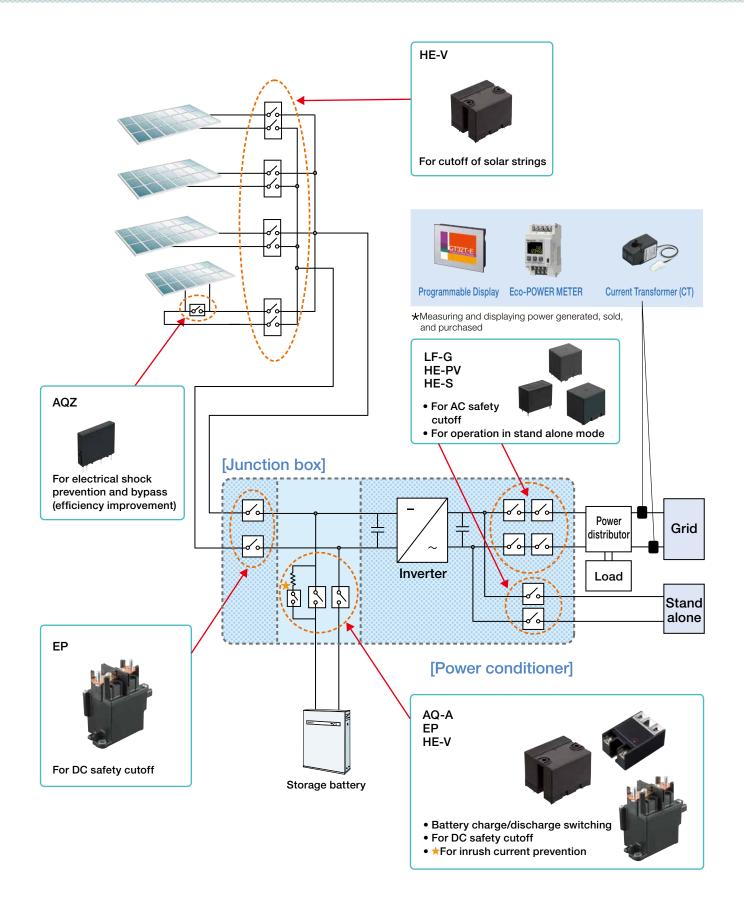
*1 Each 1 Form A contact connected in series. *2 When using each 1 Form A contact independently


Product name			PhotoMOS			AQ-H SSR					
Applications	Insulation detection	Battery n	nonitoring	Communication	Main relay driving	Main relay driving					
Part No.	AQV258*	AQW214EH	AQW216EH	AQY210EH	AQY212EH	AQH2223					
Appearance			m			- THE					
Contact arrangement	1 Form A	2 Form A	2 Form A	1 Form A	1 Form A	1 Form A					
Continuous load current	20mA	100mA	40mA	130mA	550mA	_					
ON-state RMS current	_	_	_	-	-	0.9A					
Load voltage	1,500V	400V	600V	350V	60V	_					
Repetitive peak OFF-state voltage	_	-	-	-	-	600V					
I/O isolation voltage	1,500V AC	5,000V AC	5,000V AC	5,000V AC	5,000V AC	5,000V AC					
Safety standards	UL/C-UL, BSI	UL/C-UL, BSI	UL/C-UL, BSI	UL/C-UL, BSI	UL/C-UL, BSI	UL/C-UL, VDE					

*If you require the high I/O isolation voltage type, please contact our sales representative.

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

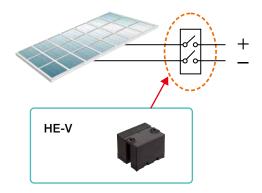
© Panasonic Corporation 2017


New Product Introduction

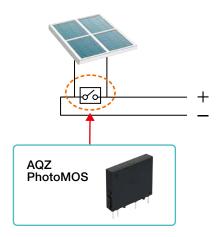
-5-

Photovoltaic Power Generation System

Recommended products


-6-

Photovoltaic Power Generation System

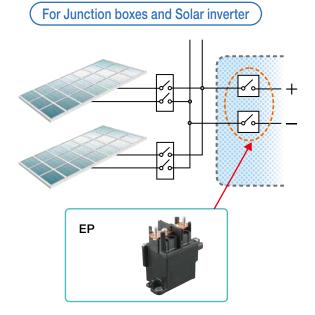

relay

Recommended products (DC side)

For Junction box connectors

Recommended High-vo

HE-V (2a 20A 1,000V DC*) High-voltage cutoff relay capable of simultaneously cutting off the

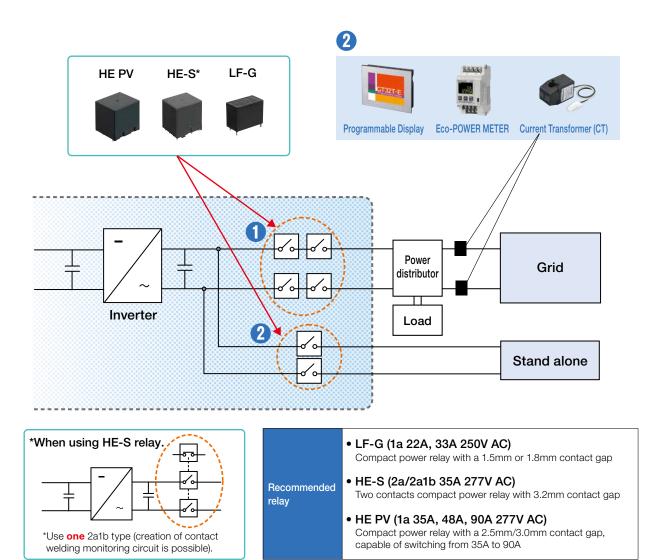

positive (+) and negative (-) terminals by serially connecting the 1 Form A contact. Up to 1,000V DC cutoff

 *1,000 V DC is the maximum allowable voltage when each 1 Form A contact is connected in series. The rating is 800 V DC.

- When something shades the solar panels or a defect occurs, the total power generation efficiency of the system decreases. In such cases, the total power generation efficiency can be maintained by bypassing low-efficiency panels or cutting off strings using relays.
- In case of a disaster, such as fire, system safety can be maintained by shorting each solar panel. (E.g. electrical shock prevention of firefighters)
- Remote control is possible for maintenance work, reducing maintenance costs.

Recommended relay

AQZ PhotoMOS (1a 10A 60V DC) PhotoMOS capable of frequent switching, improving system reliability



- In case of a disaster, such as fire, system safety can be maintained by cutting off the DC line.
- Remote control is possible for maintenance work, reducing maintenance costs.
- •Large current cuttoff possible during malfunction when connecting storage battery. (80 to 300A type)

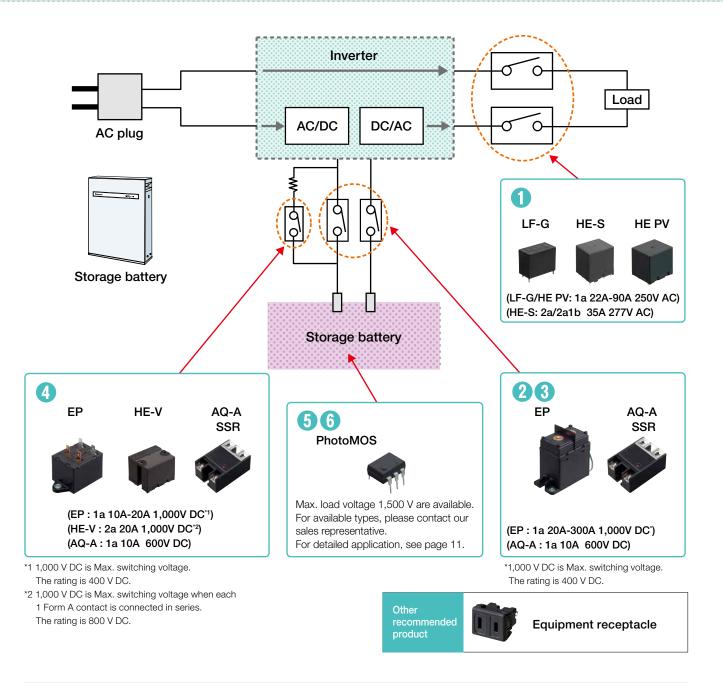
*1,000 V DC is the maximum allowable voltage. The rating is 400 V DC.

Recommended products (AC side)

1 For Safety Cutoff on the AC side

• Relays are used for safety cutoff on the grid (power network). The relay must cutoff the circuit to prevent abnormal currents that occur from affecting the commercial power supply. Power relays are required as safety measures to protect the power supply system.

2 For operation in stand-alone mode


• Relay contacts will be ON during a power outage and use of the stand-alone function is possible. The relays are used for stand-alone mode.

3 Eco-POWER METERs/Programmable Displays

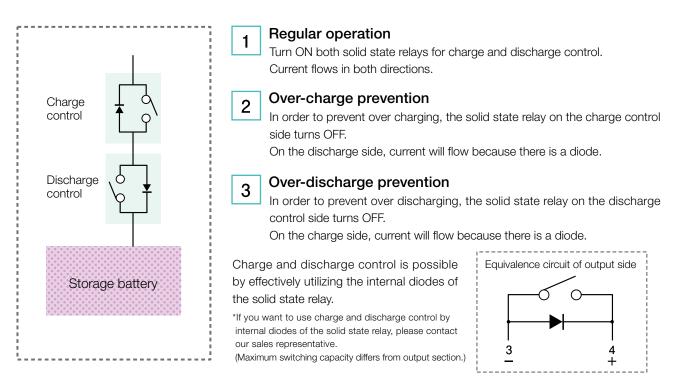
• These are used for displaying the amount of sold/purchased power of a photovoltaic power generation system and power generated by a solar inverter. Photovoltaic power generation systems and fuel cell systems linked to storage batteries require surveillance of reverse power (tidal current) to grids. Equipped with a fine current detection function, Eco-POWER METERs are ideal for reverse power (tidal current) surveillance.

Battery Storage System

Recommended products

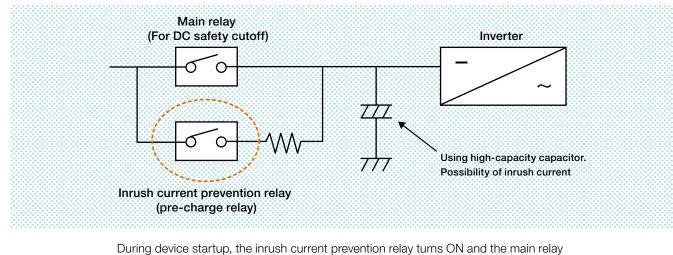
For Safety Cutoff on the AC side

• Relays are used for safety cutoff on the grid (power network). The relay must cutoff the circuit to prevent abnormal currents that occur from affecting the commercial power supply. Power relays are required as safety measures to protect the power supply system.


2 For Safety Cutoff on the DC Side

• Power relays are required as safety measures in the event of a defect in or malfunction of the battery or system.

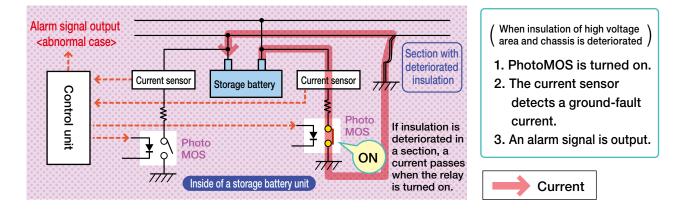
-9-


3 For Charge and Discharge

 AQ-A SSR (PhotoMOS) is used to switch charge and discharge. We recommend solid state relays for applications where there will be frequent ON/OFF switching.

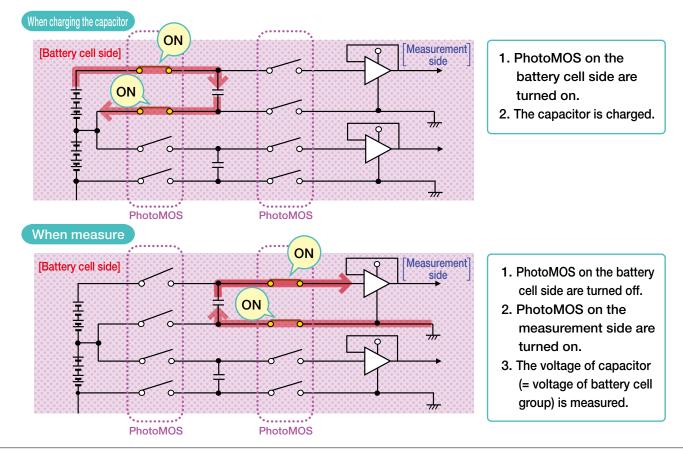
4 For preventing an inrush current into capacitors when charging (pre-charge circuit)

●AQ-A SSR (PhotoMOS), HE-V relay, and 10A and 20A types of EP relays are used for preventing an inrush current into capacitors when charging. We recommend solid state relays for miniaturization and HE-V relay and 10A and 20A types of EP relays for high voltages.


Effective for protection against inrush currents that occur when charging the capacitor.

Battery Storage System

5 For Insulation Detection


PhotoMOS are used for monitoring storage battery units for insulation deterioration

If the insulation in a unit deteriorates, a ground-fault current passes when the relay is turned on, and a sensor detects the current. High load voltage type PhotoMOS are ideal for use with storage batteries, which carry high voltage.

6 For Battery Monitoring

PhotoMOS are used in a circuit for monitoring charging voltages of a battery cell group.
Compact PhotoMOS capable of frequent switching are ideal for this type of use.
Use of the relays allows for insulation from high voltage areas.

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

© Panasonic Corporation 2017

Fast Charging Station

Recommended products

The rating is 400 V DC.

For Safety Cutoff on the AC side

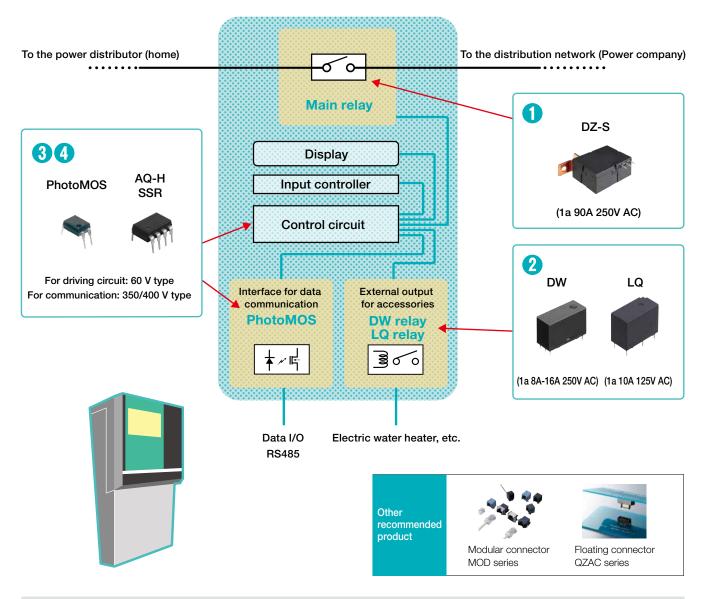
• Relays are used for safety cutoff on the grid (power network). The relay must cutoff the circuit to prevent abnormal currents that occur from affecting the commercial power supply. Power relays are required as safety measures to protect the power supply system.

2 For Insulation Detection

●PhotoMOS are used for monitoring fast charging stations for insulation deterioration.

If the insulation in a station deteriorates, a ground-fault current passes when the relay is turned on, and a sensor detects the current. High load voltage type PhotoMOS are ideal for use with fast charging stations, which carry high voltage.

3 For Safety Cutoff on the DC Side


• Power relays are required as safety measures in the event of a defect in or malfunction of the battery or system.

4 For Signal Control For IC card activation

• For models that require the use of IC cards for charge control, etc., low on-resistance type PhotoMOS are used for signal control.

Smart Meter

Recommended products

For Main Power Cutoff

• Main relays are used for cutting off the main power. There is demand for a remote cutoff function for rolling blackouts, a prepaid system, safety measures, responses to non-payment of electric bills, etc.

2 For External Output of Accessories

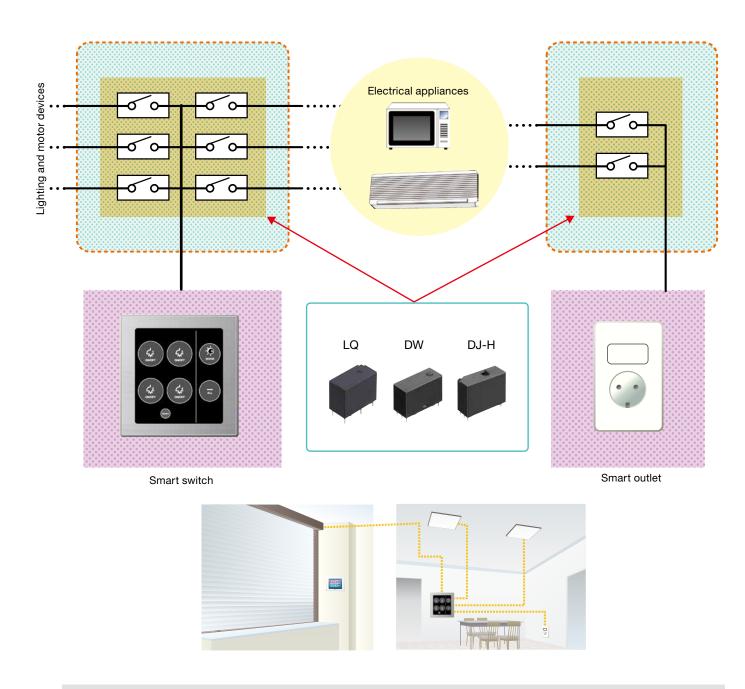
•Relays are used for driving a contactor to turn on a electric water heater using power at night.

3 For Driving Main Relays

● PhotoMOS and AQ-H SSRs are used for driving main relays.

4 For Data Communications

●PhotoMOS are used as output contacts for external communications.


Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

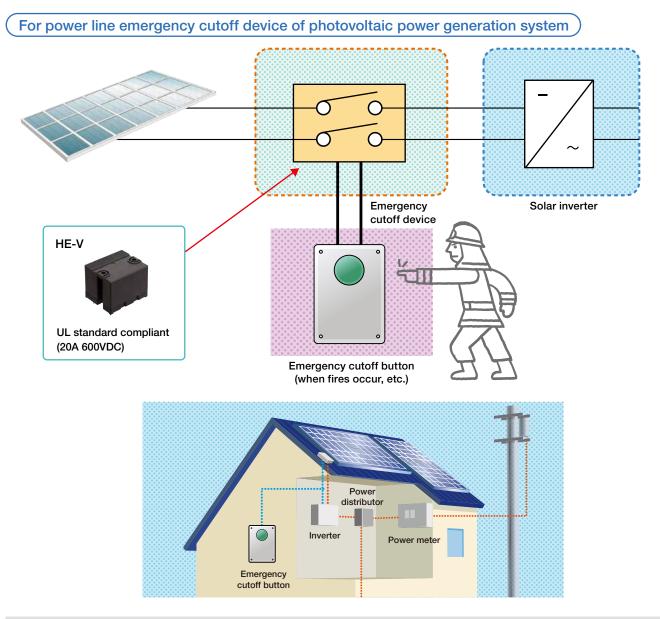
© Panasonic Corporation 2017

Application Introduction

Lighting/Outlet Control

Recommended products

Remote control applications


• Relays are used in remote control applications. Smart switches with built-in relays make remote control, collective control and visualization of electricity usage possible.

Applications for automatic cutoff during earthquakes

• Power relays can be used in safety cutoff applications when earthquake tremors are detected.

Rapid Shutdown System (NEC2014 690.12)

Recommended products

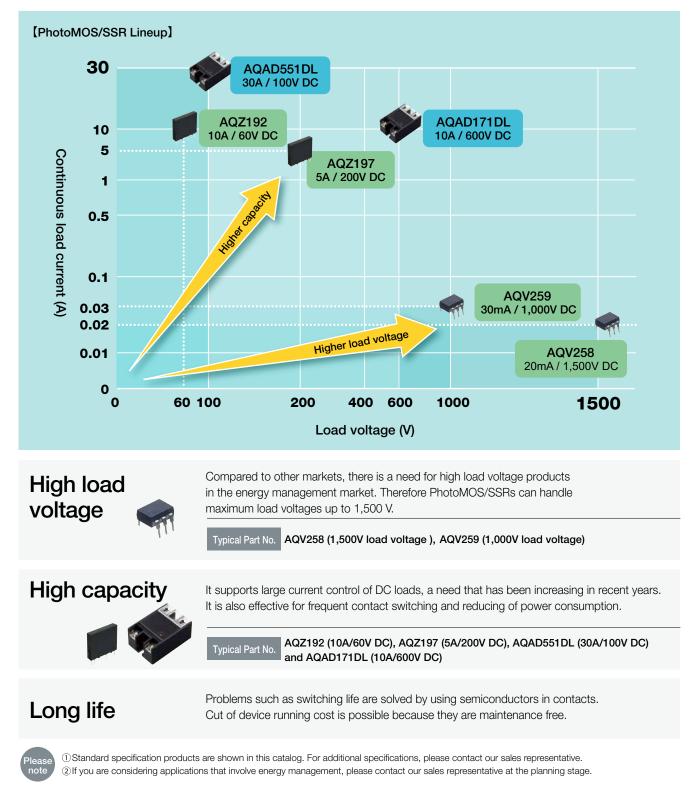
For power line cutoff during firefighting

[What is a rapid shutdown system?]

This is a system designed to cut off the DC power line on the panel side of photovoltaic power generation equipment. In North America, the NFPA (National Fire Protection Association) is likely to soon define this (690.12) and legislate it into law within NEC2014 (National Electric Code 2014), due to the occurrence of electrocution among firefighters when putting out fires. Also, in Germany installation of this system is a requirement to obtain fire insurance.

[NEC2014 690.12 definition (summary)]

- Emergency cutoff device (controlled by relay) shall install in less than 1.5 m (5 ft) in length inside a building, or less than 3 m (10 ft) in length outside a building from a PV array.
- Controlled conductors shall be limited to less than 30 V and 240 VA within 10 seconds of rapid shutdown initiation.
- The use of UL standard certified components is a requirement in system configurations.

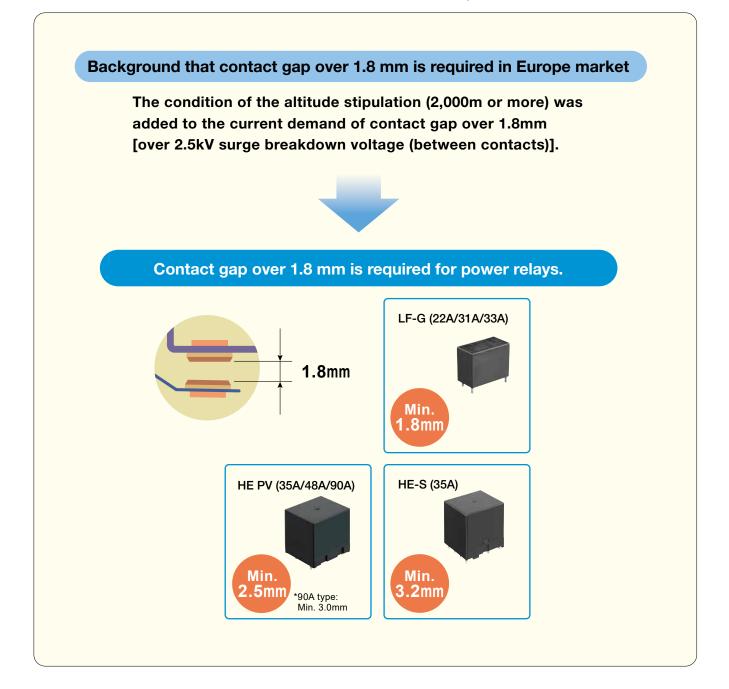

Product Features

PhotoMOS / SSR AQ-A

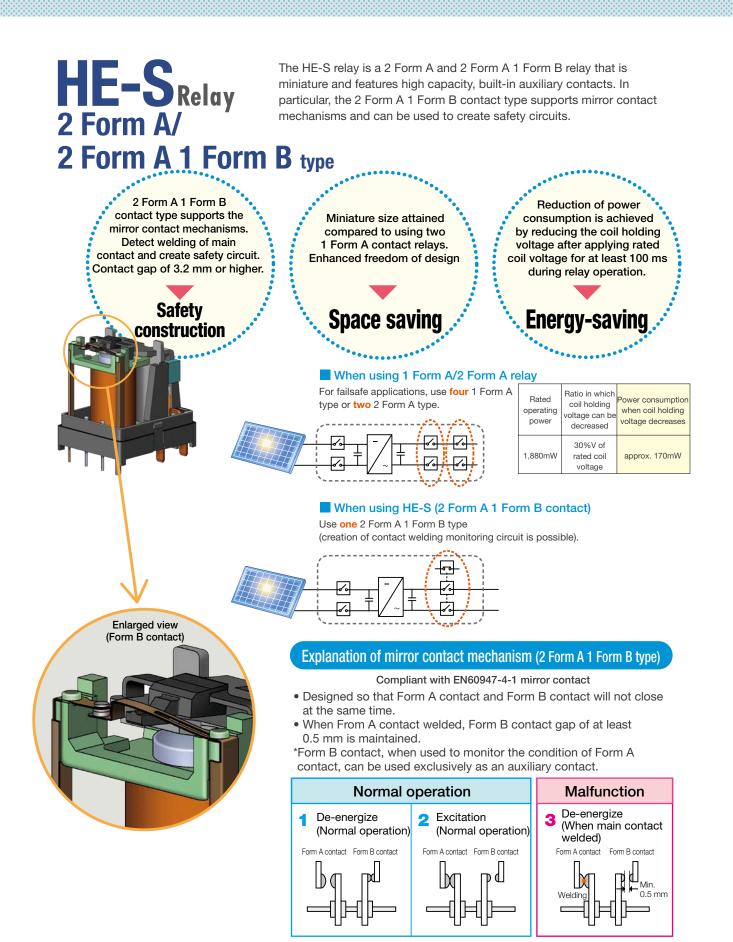
PhotoMOS/SSR AQ-A

MOSFET, phototriac coupler, etc., is used inside internal element.

This facilitates customer needs for "High load voltage", "High capacity", and "Long life".



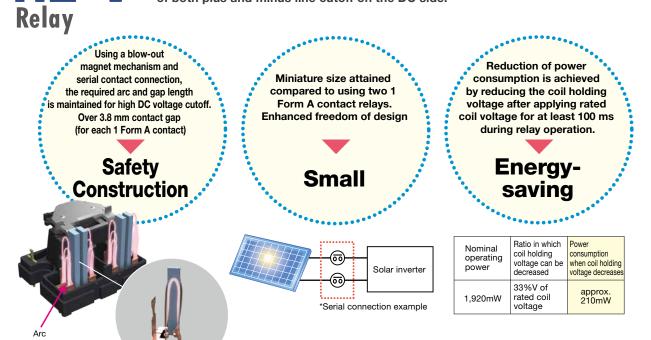
Product Features _F-G/HE-S/HE relay PV

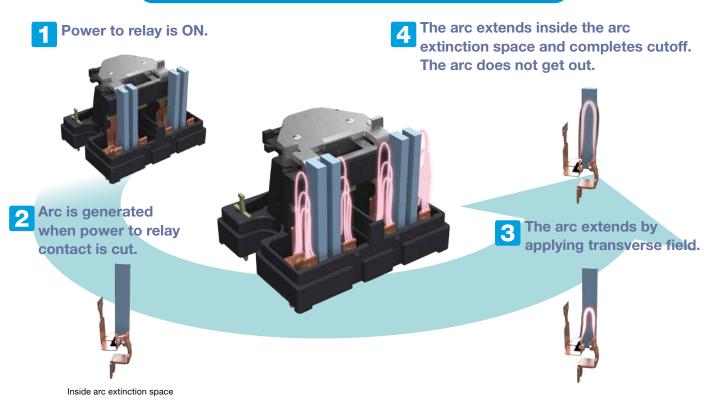

LF-G/HE-S/HE PV Suitable for European photovoltaic generation Relay

photovoltaic generation standard IEC62109 and VDE0126 (Maintain a contact gap of at over 1.8 mm.)

Over 1.8mm contact gap is required for the AC circuit side on photovoltaic generation equipment in the European market.

Product features HE-S relay




HE-V relay

HE-V

The HE-V relay is a miniature power relay that can conduct and cut off high DC voltage or high currents. Using a 2 Form A contact, it is capable of both plus and minus line cutoff on the DC side.

Operation explanation(interception mechanism)

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

© Panasonic Corporation 2017

LF-G Relay/HE-S Relay/HE Relay PV/HE-V Relay features

Contribute to energy saving with reduced coil holding voltage

In existing products, nominal coil voltage had to be applied to the coil side. However LF-G Relay, HE-S Relay, HE Relay PV and HE-V Relay will be operated with reduced coil voltage (coil holding voltage *1), so that lower power consumption could be achieved.

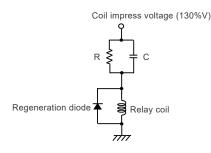
Reduce the coil holding voltage after applying the rated coil voltage for 100 ms or longer in that way you could reduce the energy consumption.

Product	Rated operating power	Ratio in which coil holding voltage can be decreased at 20°C	Power consumption when coil holding voltage decreases at 20°C	Ratio in which coil holding voltage can be decreased at 85°C	Power consumption when coil holding voltage decreases at 85°C	(V) 9	L	LF-G Rela 9V
LF-G Relay	1,400mW	35%V of rated coil voltage	approx. 170mW	45%V of rated coil voltage	approx. 280mW	9		30
HE Relay PV	1,920mW	40%V of rated coil voltage	approx. 310mW	%C decreased at 85°C dec mW 45%V of rated coil voltage appr mW 50%V of rated coil voltage appr mW 30%V of rated coil voltage appr mW 30%V of rated coil voltage appr	approx. 480mW	3,15		
HE-S Relay	1,880mW	30%V of rated coil voltage	approx. 170mW		approx. 170mW	0.10		
HE-V Relay	1,920mW	33%V of rated coil voltage	approx. 210mW		approx. 210mW		100	200 (ms

Condition: Max. contact carrying current (LF-G, HE, HE-S and HE-V)

*1 Coil holding voltage is the coil voltage after 100ms following application of the rated coil voltage.

How to reduce coil holding Voltage


Please refer to the circuit examples below for reducing the coil holding voltage of AC load relays.

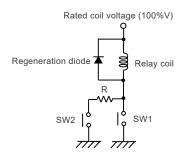
Please note, that the methods shown below are just examples and do not constitute any guarantee. Be sure to verify operation in your actual device.

Also, please contact our sales representative if you are considering a holding voltage reduction circuit using DC load relays (HE-V relay and EP relay).

(Please note that for switching DC loads, if a diode is used in the coil surge absorbing element in the relay, the contact opening velocity will slow down and sufficient cutoff performance cannot be guaranteed.)

1. Example of CR circuit method

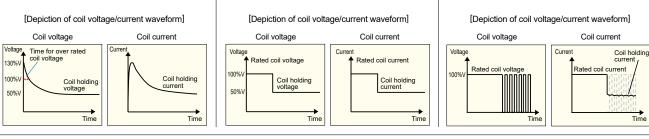
[Operation explanation]


(1) Apply voltage of over rated coil voltage

(around 130%V).

(2) Power consumption when relay is ON is controlled using the values of relay coil resistance, C, and R.

*For application time of voltages over the rated voltage, please set value of capacitor C to 50 ms or greater. *Set the coil holding voltage using resistance R, and the relay coil resistance to reach the voltage you are aiming for (around 50%V).


2. Example of switch method

[Operation explanation]

- (1) Operate by turning SW1 ON and applying rated voltage (100%V) to relay coil.
- (2) After at least 0.1 s in (1) , turn SW2 ON,
 - turn SW1 OFF and control the power consumption when the relay is ON using the value of resistance R.

*Set the coil holding voltage using resistance R, and the relay coil resistance to reach the voltage you are aiming for (around 50%V).

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

© Panasonic Corporation 2017

3. Example of PWM method

Regeneration diode

PWM control

Duty ratio 50%

[Operation explanation]

(Duty ratio 50%), and control

Rated coil voltage (100%V)

Relay coil

MOS-FET

for PWM control

g

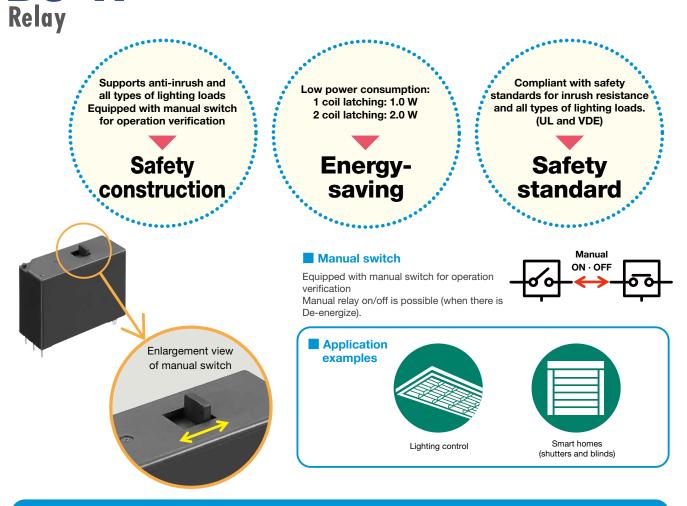
7777

Make sure MOS-FET is completely ON (Duty ratio 100%)

(2) After at least 0.1 s of (1), start PWM control with MOS-FET

(1) MOS-FET→ON (Voltage supplied to relay coil)

the power consumption when the relay is ON.


*We recommend a PWM control frequency of 20 kHz to 100 kHz.

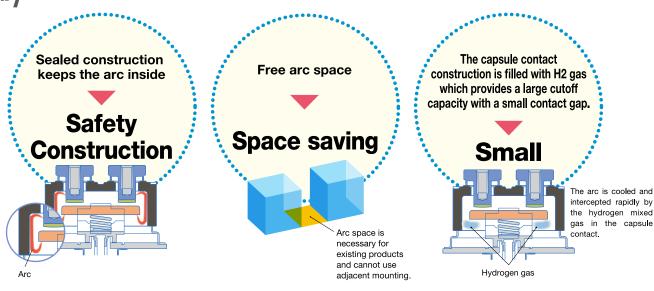
Product Features

DJ-H

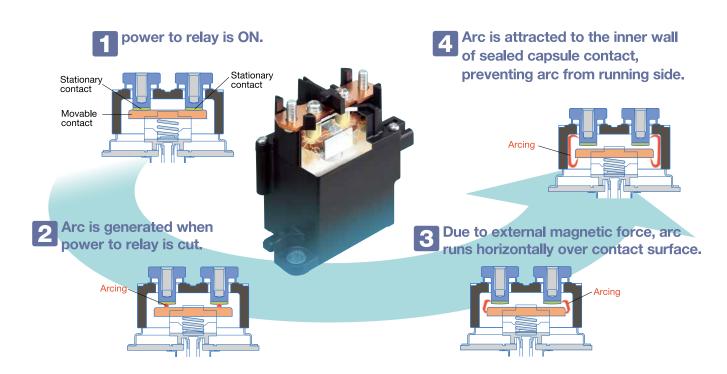
DJ-H relay

This is a 1a 50A high capacity latching relay that can handle lighting and motor loads. Manual operation verification is possible with the manual switch type.

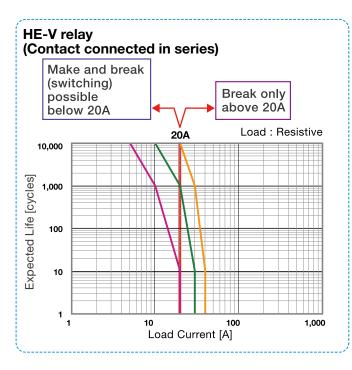
Supports inrush current loads


 Supports all types of inrush loads such as tungsten loads (TV-20 equivalent), electric ballast loads (NEMA410), and capacitor loads (IEC60669-1), etc.

Load	Tungsten load	Electronic ballast load	Capacitive load
Switching capacity	2,400W 120V AC	20 A 277 V AC	20 A 250 V AC 200 µF
Electrical life	Min. 2.5 × 10 ⁴	Min. 6 × 10 ³	Min. 3 × 10 ⁴
Surge current waveform	Tek The Pelay M Pos: 3.800ms	Tek 1 - Acq Complete M Pos : 11.52ms	Тек Г. • Acq Complete M Pos : 6.480ms

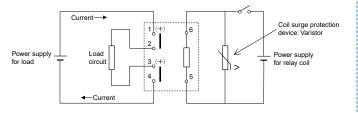


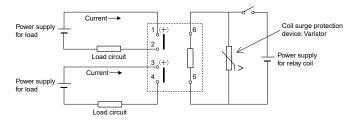
EP Relay The EP relay is a power relay that enables DC high voltage and a high current interruption in small size. Below listed are features compared to DC contactor of existing products generally used in the DC high voltage area.


Operation explanation(interception mechanism)

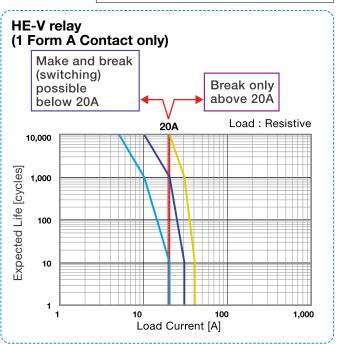
Reference data

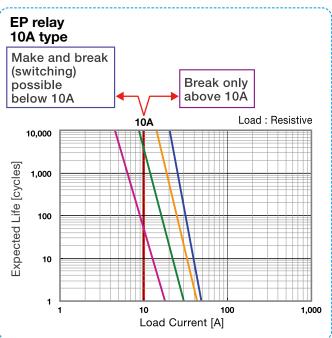
HE-V relay/EP relay expected life (cycles)

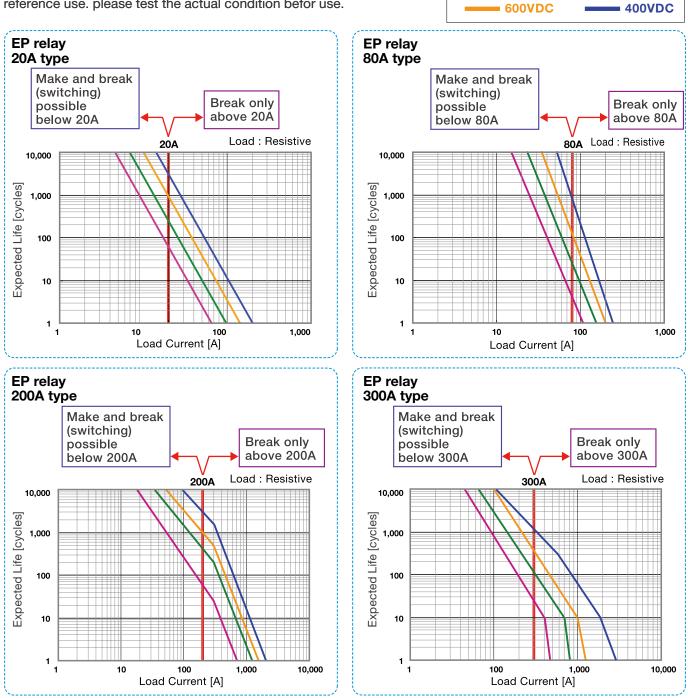

Notes: In case of using over the rating, the data is only reference use. please test the actual condition befor use.



Positive polarity of load should be connected to pin 1 and pin 3, refer to the following circuit schematics.


1. Each 1 Form A contact connected in series (Bottom view)




2. 1 Form A contact only (Bottom view)

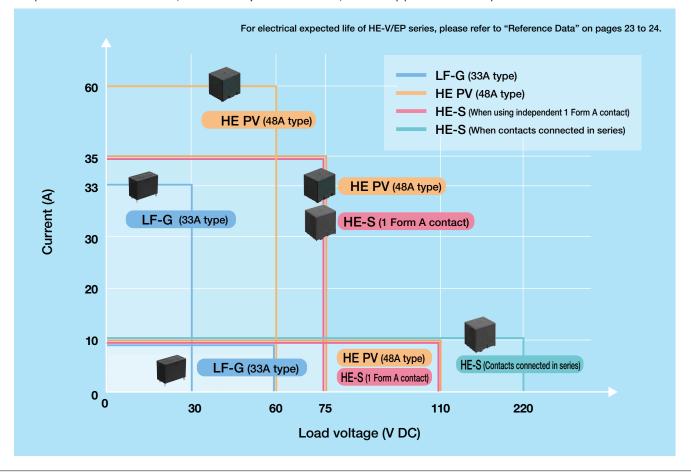
Notes: In case of using over the rating, the data is only reference use. please test the actual condition befor use.

The application examples in this document are for reference. Be sure to verify safety on the actual device before using.

-24-

1,000VDC

800VDC


DC load switching capacity on AC load relay

Even on some AC load relays, support for DC loads is possible. *Guideline for when using DC loads. Please test the actual condition before use.

DC load switching capacity that is possible on AC load relay (reference value)

Appearance	Product name	Contact	Load voltage	Current	Electrical expected life (resistive load)	Remark
	LE C (224 turne)	1	30V DC	33A		
	LF-G (33A type)	1 Form A	60V DC	10A		
	HE PV (48A type)	1 Form A	75V DC	35A	1×10⁴	
-			110V DC	10A		
			75V DC	35A		When using independent 1 Form A contact
	HE-S (35A type)	2 Form A	110V DC	10A		When using independent 1 Form A contact
			220V DC	10A		When contacts connected in series

Maximum value of DC load switching capacity that is possible on AC load relay (Conditions: resistive load, electrical expected life of 10,000 times) (reference value)

Panasonic Corporation Electromechanical Control Business Division industrial.panasonic.com/ac/e/

-25-

© Panasonic Corporation 2017

						_													
						_													 _
		 				 _				 	 		 			 	 		 _
						 				 			 						 _
						_													 _
		 	 			 _				 	 		 			 	 		 _
						 _							 						 -
						 			_					_					_
							1		1										
						_	-	-	-					+			-	-	\neg
						 													 _
						_	 								_				 -
		 	 			 				 	 	 	 			 	 		 _
						_													 _
						 _	_			 	 		 				 		 _
						_								_					
						_								-					_
						 			_					_					
								1											
						_								+			-		-
						 			-+	 	 		 	-			 		 _
-				-					-+				-				\rightarrow	-	-
						 			-+		 		 	+			 		 -
						 	_				 		 				 		
-				-					-+				-				\rightarrow		-
						 	_		_					-					 _
				-		 						 	 				-		

Please contact

Panasonic Corporation Electromechanical Control Business Division

Electromechanical Control Business Division ■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

©Panasonic Corporation 2017

Specifications are subject to change without notice.