Axial Piston Variable Pump
A18VO Series 11

Features
▶ Variable pump with axial tapered piston rotary group of bent-axis design with special characteristics and dimensions for use in commercial vehicles.
▶ The flow is proportional to the drive speed and displacement.
▶ The flow can be infinitely varied by adjusting the bent-axis angle.
▶ Favorable power-to-weight ratio, compact dimensions, optimum efficiency, economical design
▶ High self-suction capability
▶ Flange and shaft designed for direct mounting on the power take-off of commercial vehicles
▶ Low noise levels
▶ Increased pressure (350/400 bar) compared to standard pump A17VO

Contents
Ordering code 2
Technical data 3
DRS – Pressure controller with load sensing 8
EP – Proportional control electric 10
Dimensions size 55 12
Dimensions size 80 14
Dimensions size 107 16
Suction stud 19
Coupling flange 20
Connector for solenoids 21
Installation instructions 22
Other related documents 23
General instructions 24
Ordering code

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>A18V</td>
<td>O</td>
<td>/</td>
<td>11</td>
<td>N</td>
<td>W</td>
<td>K0</td>
<td>0</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Axial piston unit
- Bent-axis design, variable, nominal pressure 350 bar, maximum pressure 400 bar, for commercial vehicles (trucks)

Operating mode
- 02 Pump, open circuit

Sizes (NG)
- 03 Geometric displacement, see table of values on page 6
- 055 080 107

Control devices
- 04 Pressure controller with load sensing
 - Proportional control electric positive control $U = 24\, V$● ● ● DRS
 - negative control $U = 24\, V$● ● ● EP2
- 05 Without connector (without solenoid, only for hydraulic controller)
 - DEUTSCH – molded connector, 2-pin – without suppressor diode● P

Connector for solenoids (see page 21)
- 06 Without additional functions

Series
- 07 Series 1, index 1
- 11

Configuration of ports and fastening threads
- 08 Metric, port threads with profiled sealing ring according to DIN 3852
- N

Directions of rotation
- 09 Viewed on drive shaft
 - clockwise R
 - counter-clockwise L

Seals
- 10 FKM (fluor-caoutchouc) including the 2 shaft seal rings in FKM
- W

Mounting flange
- 11 Special flange ISO 7653-1985 (for trucks)
- K0

Drive shaft
- 12 Splined shaft similar to DIN ISO 14 (for trucks)
 - Splined shaft E8 with coupling flange E8
 - Splined shaft C8 C8

Port plate for service lines
- 13 Threaded ports A and S at rear
 - Threaded ports A and S at rear, with suction stud mounted in S
 - 1
 - 2

Auxiliary functions 2
- 14 Without auxiliary functions
 - 0

Standard / special version
- 15 Standard version
 - Special version
 - 0

● = Available ○ = On request
Technical data

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

If environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed. Please contact us.

Note

Variable pump A18VO is not suitable for operation with water-containing HF hydraulic fluid.

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in an open circuit the reservoir temperature. The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (\(\nu_{\text{opt}}\), see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of \(X \, ^\circ C\), an operating temperature of \(60 \, ^\circ C\) is set in the circuit. In the optimum operating viscosity range (\(\nu_{\text{opt}}\), shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the reservoir temperature. At no point of the component may the temperature be higher than \(115 \, ^\circ C\). The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

Viscosity and temperature of hydraulic fluid

<table>
<thead>
<tr>
<th>Viscosity [mm²/s]</th>
<th>Temperature</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport and storage at ambient temperature</td>
<td>(T_{\text{min}} \geq -40 , ^\circ C)</td>
<td>factory preservation: up to 12 months with standard, up to 24 months with long-term</td>
</tr>
<tr>
<td>(Cold) start-up</td>
<td>(\nu_{\text{max}} = 1600)</td>
<td>up to 3 min, without load ((p \leq 50 , \text{bar})), (n \leq 1000 , \text{rpm})</td>
</tr>
<tr>
<td>Permissible temperature difference</td>
<td>(\Delta T \leq 25 , \text{K})</td>
<td>between axial piston unit and hydraulic fluid</td>
</tr>
<tr>
<td>Warm-up phase</td>
<td>(\nu < 1600) to 400</td>
<td>(T = -40 , ^\circ C) to (-25 , ^\circ C) at (p \leq 0.7 \cdot p_{\text{nom}}, n \leq 0.5 \cdot n_{\text{nom}}) and (t \leq 15 , \text{min})</td>
</tr>
<tr>
<td>Operating phase</td>
<td>(\Delta T = \text{approx. } 12 , \text{K})</td>
<td>between hydraulic fluid in the bearing and at port R</td>
</tr>
<tr>
<td>Maximum temperature</td>
<td>115 , ^\circ C)</td>
<td>in the bearing</td>
</tr>
<tr>
<td>Continuous operation</td>
<td>(\nu = 400) to 10</td>
<td>measured at port R</td>
</tr>
<tr>
<td></td>
<td>(\nu_{\text{opt}} = 36) to 16</td>
<td>no restriction within the permissible data</td>
</tr>
<tr>
<td>Short-term operation</td>
<td>(\nu_{\text{min}} \geq 7)</td>
<td>measured at port R, (t < 3 , \text{min}, p < 0.3 \cdot p_{\text{nom}})</td>
</tr>
<tr>
<td>Shaft seal FKM</td>
<td>(T \leq 115 , ^\circ C)</td>
<td>see page 4</td>
</tr>
</tbody>
</table>
Filtration of the hydraulic fluid
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.
At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.
If the above classes cannot be achieved, please contact us.

Case drain fluid
The case drain chamber is connected to the suction chamber. A case drain line from the case to the reservoir is not required (port "R" is plugged).
On versions with DRS control, a case drain line for discharge from port "T" to the reservoir is absolutely essential (not necessary for EP control).

Shaft seal
The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note
For the temperature range below -25 °C, the values in the table on page 3 are to be observed.
Operating pressure range
Valid when using hydraulic fluids based on mineral oils

<table>
<thead>
<tr>
<th>Pressure at service line port A</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal pressure (p_{\text{nom}})</td>
<td>350 bar absolute</td>
</tr>
<tr>
<td>Maximum pressure (p_{\text{max}})</td>
<td>400 bar absolute</td>
</tr>
<tr>
<td>Single operating period</td>
<td>5 s</td>
</tr>
<tr>
<td>Total operating period</td>
<td>50 h</td>
</tr>
<tr>
<td>Minimum pressure (high-pressure side)</td>
<td>10 bar absolute</td>
</tr>
<tr>
<td>Rate of pressure change (R_{\text{A max}})</td>
<td>9000 bar/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure at suction port S (inlet)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum pressure (p_{S \text{ min}})</td>
<td>0.8 bar absolute</td>
</tr>
<tr>
<td>Maximum pressure (p_{S \text{ max}})</td>
<td>2 bar absolute</td>
</tr>
</tbody>
</table>

\[\text{Rate of pressure change } R_{\text{A max}} \]

\[\text{Pressure definition} \]

Total operating period = \(t_1 + t_2 + ... + t_n \)

Note
Values for other hydraulic fluids, please contact us.
Table of values

Theoretical values, without efficiency and tolerances; values rounded

<table>
<thead>
<tr>
<th>Size</th>
<th>NG 55</th>
<th>80</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement geometric, per revolution</td>
<td>$V_{g\ max}$ cm³</td>
<td>54.8</td>
<td>80</td>
</tr>
<tr>
<td>Speed maximum<sup>1)</sup> at $V_{g\ max}$</td>
<td>n_{nom} rpm</td>
<td>2500</td>
<td>2240</td>
</tr>
<tr>
<td>at $V_{g} < 0.74 \cdot V_{g\ max}$</td>
<td>n_{max1} rpm</td>
<td>3400</td>
<td>3000</td>
</tr>
<tr>
<td>Speed maximum<sup>2)</sup></td>
<td>n_{max2} rpm</td>
<td>3750</td>
<td>3350</td>
</tr>
<tr>
<td>Flow at n_{nom} and $V_{g\ max}$</td>
<td>q_{v} L/min</td>
<td>137</td>
<td>179</td>
</tr>
<tr>
<td>Power at n_{nom}, $V_{g\ max}$ and $\Delta p = 350$ bar</td>
<td>P kW</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td>Torque at $V_{g\ max}$ and $\Delta p = 350$ bar</td>
<td>T Nm</td>
<td>305</td>
<td>446</td>
</tr>
<tr>
<td>Rotary stiffness from $V_{g\ max}$ to $0.5 \cdot V_{g\ max}$<sup>1)</sup></td>
<td>c_{min} Nm/rad</td>
<td>10594</td>
<td>15911</td>
</tr>
<tr>
<td>$0.5 \cdot V_{g\ max}$ bis $0.1 \cdot V_{g\ max}$<sup>1)</sup></td>
<td>c_{max} Nm/rad</td>
<td>32103</td>
<td>48971</td>
</tr>
<tr>
<td>Moment of inertia for rotary group</td>
<td>J_{GR} kgm²</td>
<td>0.0034</td>
<td>0.0066</td>
</tr>
<tr>
<td>Maximum angular acceleration</td>
<td>α rad/s²</td>
<td>31600</td>
<td>24200</td>
</tr>
<tr>
<td>Case volume</td>
<td>V L</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Mass moment</td>
<td>T_{0} Nm</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>Mass (approx.)</td>
<td>m kg</td>
<td>16</td>
<td>21</td>
</tr>
</tbody>
</table>

¹⁾ The values are valid:
- at an absolute pressure $p_{abs} = 1$ bar at suction port S
- for the optimum viscosity range from $\nu_{opt} = 36$ to $16 \ mm²/s$
- with hydraulic fluid based on mineral oils

²⁾ Maximum rotational speed (limit speed) for increased inlet pressure p_{abs} at suction port S and $V_{g} < V_{g\ max}$, see the following diagram

Determining the operating characteristics

Formulas

<table>
<thead>
<tr>
<th>Flow</th>
<th>$q_{v} = \frac{V_{g} \cdot n \cdot \eta_{v}}{1000}$ [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
<td>$T = \frac{V_{g} \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}}$ [Nm]</td>
</tr>
<tr>
<td>Power</td>
<td>$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_{v} \cdot \Delta p}{600 \cdot \eta_{t}}$ [kW]</td>
</tr>
</tbody>
</table>

Key

- V_{g} = Displacement per revolution in cm³
- Δp = Differential pressure in bar
- n = Speed in rpm
- η_{v} = Volumetric efficiency
- η_{mh} = Mechanical-hydraulic efficiency
- η_{t} = Total efficiency ($\eta_{t} = \eta_{v} \cdot \eta_{mh}$)

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.
Permissible axial forces of the drive shaft

The values given are maximum values and do not apply to continuous operation. For drives with radial loading (pinion, V-belt drives), please contact us!

<table>
<thead>
<tr>
<th>Size</th>
<th>NG</th>
<th>55</th>
<th>80</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>When standstill or when axial piston unit operating in non-pressurized conditions</td>
<td>$\pm F_{\text{ax max}}$</td>
<td>N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Permissible axial force per bar operating pressure</td>
<td>$F_{\text{ax max}}$</td>
<td>N/bar</td>
<td>66</td>
<td>86</td>
</tr>
<tr>
<td>$F_{\text{ax max}}$</td>
<td>$-F_{\text{ax max}}$</td>
<td>N/bar</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note

Influence of the direction of the permissible axial force:

$+ F_{\text{ax max}} = $ Increase in service life of bearings

$- F_{\text{ax max}} = $ Reduction in service life of bearings (avoid)
DRS – Pressure controller with load sensing

Function of the pressure controller
The pressure controller limits the maximum pressure at the pump outlet within the control range of the pump. The variable pump only delivers as much hydraulic fluid as the consumers actually need. If the operating pressure exceeds the pressure setpoint set at the integrated pressure valve, the pump will regulate to a smaller displacement to reduce the control deviation.

In a non-pressurized state, the pump is swiveled to its initial position to $V_{g\ max}$ by a return spring.

▶ Setting range for pressure control: 80 to 400 bar
▶ Standard setting: 350 bar

Note
A pressure-relief valve is provided to limit the maximum pressure in the system. This must be at least 20 bar above the control setting at the start of opening.

The pressure controller overrides the load sensing controller, i.e. the load sensing function operates below the set pressure.

Load sensing function
The load sensing controller works as a load-pressure controlled flow compensator and adjusts the displacement of the pump to the volume required by the consumer.

The flow of the pump is then dependent on the cross section of the external metering orifice (1), which is located between the pump and the consumer. Below the setting of the pressure control and within the control range of the pump, the flow is not dependent on the load pressure.

As a rule, the metering orifice is a separately located load sensing directional valve (control block). The position of the directional valve piston determines the opening cross section of the metering orifice and thus the flow of the pump.

The load sensing controller compares the pressure before the metering orifice with that after the orifice and maintains the pressure drop encountered here (differential pressure Δp) and thus the flow constant.

If the differential pressure Δp at the metering orifice rises, the pump is swiveled back (toward $V_{g\ min}$). If the differential pressure Δp drops, the pump is swiveled out (toward $V_{g\ max}$) until equilibrium at the metering orifice is restored.

$$\Delta p_{\text{Metering orifice}} = p_{\text{Pump}} - p_{\text{Consumer}}$$

▶ Setting range for Δp 19 to 40 bar
▶ Standard setting: 30 bar

The stand-by pressure in zero-stroke mode (metering orifice closed) is slightly higher than the Δp setting.
Zero-stroke mode

The standard version is designed for intermittent, constant-pressure operation. Short-term (< 1 min), zero-stroke operation is permissible up to an operating pressure $p_{\text{nom}} = 350$ bar with reservoir temperature ≤ 50 °C.

Note

To ensure thermal stability, a case drain line from port "T" to the reservoir is generally required with the DRS controller (not needed for EP control).

When ordering, please state in plain text:
- Pressure control setting
- Δp setting for load sensing function

If these details are missing from the order, the pump will be delivered with the standard setting, see page 8.

(1) The sensing orifice (control block) is not included in the delivery contents.
EP – Proportional control electric

The proportional control electric, provides infinite adjustment of the displacement, proportional to the control current applied to the solenoid.

EP2 – positive control
Adjustment from $V_{g\ min}$ to $V_{g\ max}$
With increasing control current, the pump swivels to a higher displacement. A control pressure is required to swivel the pump from its initial position $V_{g\ min}$ to $V_{g\ max}$. The necessary control power is taken from the operating pressure. To enable a pressure to be built up, a residual volume of approx. 10% of $V_{g\ max}$ is a fixed setting.

EP6 – negative control
Adjustment from $V_{g\ max}$ to $V_{g\ min}$
With increasing control current, the pump swivels to a lower displacement. The necessary control power is taken from the operating pressure.

Characteristic EP

<table>
<thead>
<tr>
<th>Control current I [mA]</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement $V_{g}/V_{g\ max}$</td>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical data, solenoid

<table>
<thead>
<tr>
<th></th>
<th>EP2</th>
<th>EP6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>24 V ±20%</td>
<td>24 V ±20%</td>
</tr>
<tr>
<td>Control current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beginning of control</td>
<td>approx. 230 mA</td>
<td>200 mA</td>
</tr>
<tr>
<td>End of control</td>
<td>600 mA</td>
<td>600 mA</td>
</tr>
<tr>
<td>Limiting current</td>
<td>0.77 A</td>
<td>0.77 A</td>
</tr>
<tr>
<td>Nominal resistance (at 20 °C)</td>
<td>22.7 Ω</td>
<td>22.7 Ω</td>
</tr>
<tr>
<td>Dither frequency</td>
<td>100 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection see connector design page 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:
- BODAS controller RC
 - RE 95200 – series 20
 - RE 95201 – series 21
 - RE 95202 – series 22
 - RE 95203, RE 95204 – series 30
 and application software
- RE 95230 – Analog amplifier RA

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.
Note

The spring return feature in the controller is not a safety device. The controller can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands. Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (e.g. immediate stop).
Dimensions size 55

DRS – Pressure controller with load sensing

View Y
Counter-clockwise rotation

View Y
Clockwise rotation

1) Center of gravity

Bosch Rexroth AG, RE 92270/06.2012

Dimensions in mm
EP2 – Proportional control electric, positive control

Dimensions in mm

Drive shaft
Splined shaft similar to DIN ISO 14 ...with coupling flange

E8 – 8x32x35

<table>
<thead>
<tr>
<th>Groove for retaining ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 x 1.5 DIN 471</td>
</tr>
</tbody>
</table>

C8

<table>
<thead>
<tr>
<th>Dimensions size 55</th>
<th>A18VO Series 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size²</th>
<th>Maximum pressure [bar]¹</th>
<th>State⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line</td>
<td>DIN ISO 228</td>
<td>G3/4; 16 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction line</td>
<td>DIN ISO 228</td>
<td>G1; 18 deep</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>T</td>
<td>Drain line (DRS only)</td>
<td>DIN 3852</td>
<td>M12 x 1.5; 12 deep</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>MA</td>
<td>Measuring pressure A</td>
<td>DIN 3852</td>
<td>M10 x 1; 8 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>MS</td>
<td>Measuring suction pressure</td>
<td>DIN 3852</td>
<td>M10 x 1; 8 deep</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>M1</td>
<td>Measuring stroking chamber</td>
<td>DIN 3852</td>
<td>M12 x 1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M18 x 1.5; 12 deep</td>
<td>2</td>
<td>X⁴</td>
</tr>
<tr>
<td>X</td>
<td>Load pressure (load sensing)</td>
<td>ISO 11926</td>
<td>7/16-20UNF-2B; 11.5 deep</td>
<td>400</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread according to DIN 13)
2) Observe the general instructions on page 24 for the maximum tightening torques.
3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
4) Only open port R for filling and air bleed.
5) The spot face can be deeper than specified in the appropriate standard.
6) O = Must be connected (plugged on delivery)
X = Plugged (in normal operation)
Dimensions size 80

DRS – Pressure controller with load sensing

View Y
Counter-clockwise rotation

View Y
Clockwise rotation

1) Center of gravity
EP2 – Proportional control electric, positive control

Drive shaft

Splined shaft similar to DIN ISO 14 ...with coupling flange

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size 2)</th>
<th>Maximum pressure [bar] 3)</th>
<th>State 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line</td>
<td>DIN ISO 228</td>
<td>G1; 18 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction line</td>
<td>DIN ISO 228</td>
<td>G1 1/4; 20 deep</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>T</td>
<td>Drain line (DRS only)</td>
<td>DIN 3852</td>
<td>M12 x 1.5; 12 deep</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>M_A</td>
<td>Measuring pressure A</td>
<td>DIN 3852</td>
<td>M10 x 1; 8 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M_S</td>
<td>Measuring suction pressure</td>
<td>DIN 3852</td>
<td>M10 x 1; 8 deep</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>M_1</td>
<td>Measuring stroking chamber</td>
<td>DIN 3852</td>
<td>M12 x 1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M18 x 1.5; 12 deep</td>
<td>2</td>
<td>X_4)</td>
</tr>
<tr>
<td>X</td>
<td>Load pressure (load sensing)</td>
<td>ISO 11926</td>
<td>7/16-20UNF-2B; 11.5 deep</td>
<td>400</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread according to DIN 13)
2) Observe the general instructions on page 24 for the maximum tightening torques.
3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
4) Only open port R for filling and air bleed.
5) The spot face can be deeper than specified in the appropriate standard.
6) O = Must be connected (plugged on delivery)
X = Plugged (in normal operation)
Dimensions size 107

DRS – Pressure controller with load sensing
EP2 – Proportional control electric, positive control

- View Y
- Clockwise rotation
- Counter-clockwise rotation

EP6 – Proportional control electric, negative control

- View Y
- Clockwise rotation

Dimensions in mm

Dimensions size 107 | A18VO Series 11

RE 92270/06.2012, Bosch Rexroth AG
Drive shaft

Splined shaft similar to DIN ISO 14...with coupling flange

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size(^1)</th>
<th>Maximum pressure [bar](^3)</th>
<th>State(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line</td>
<td>DIN ISO 228</td>
<td>G1; 18 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction line</td>
<td>DIN ISO 228</td>
<td>G1 1/4; 20 deep</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>T</td>
<td>Drain line (DRS only)</td>
<td>DIN 3852(^5)</td>
<td>M12 x 1.5; 12 deep</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>Mₐ</td>
<td>Measuring pressure A</td>
<td>DIN 3852(^5)</td>
<td>M10 x 1; 8 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>Mₛ</td>
<td>Measuring suction pressure</td>
<td>DIN 3852(^5)</td>
<td>M10 x 1; 8 deep</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>M₁</td>
<td>Measuring stroking chamber</td>
<td>DIN 3852(^5)</td>
<td>M12 x 1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852(^5)</td>
<td>M18 x 1.5; 12 deep</td>
<td>2</td>
<td>X(^4)</td>
</tr>
<tr>
<td>X</td>
<td>Load pressure (load sensing)</td>
<td>ISO 11926(^5)</td>
<td>7/16-20UNF-2B; 11.5 deep</td>
<td>400</td>
<td>O</td>
</tr>
</tbody>
</table>

\(^1\) Center bore according to DIN 332 (thread according to DIN 13)

\(^2\) Observe the general instructions on page 24 for the maximum tightening torques.

\(^3\) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

\(^4\) Only open port R for filling and air bleed.

\(^5\) The spot face can be deeper than specified in the appropriate standard.

\(^6\) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)
Suction Stud

Dimensions

<table>
<thead>
<tr>
<th>Axial Piston Unit</th>
<th>Suction Stud</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>Port S</td>
</tr>
<tr>
<td>55</td>
<td>G1</td>
</tr>
<tr>
<td>55</td>
<td>G1</td>
</tr>
<tr>
<td>55</td>
<td>G1 1/4</td>
</tr>
<tr>
<td>107</td>
<td>G1 1/4</td>
</tr>
<tr>
<td>55</td>
<td>G1</td>
</tr>
<tr>
<td>55</td>
<td>G1</td>
</tr>
<tr>
<td>80</td>
<td>G1 1/4</td>
</tr>
<tr>
<td>107</td>
<td>G1 1/4</td>
</tr>
<tr>
<td>55</td>
<td>G1</td>
</tr>
<tr>
<td>55</td>
<td>G1</td>
</tr>
<tr>
<td>80</td>
<td>G1 1/4</td>
</tr>
</tbody>
</table>

Dimensions in mm
Notes on suction line
- Keep as short and straight as possible, without bend
- Use a supporting ring for plastic hoses
- Use two hose clamps to protect the suction hose against air suction
- Note pressure resistance of suction hose compared to ambient pressure

Replacing seals
The O-rings used as seals to prevent air from entering the suction line are to be replaced after every removal and new installation in order to guarantee complete sealing.

Material number for O-rings:
- R902083802: O-ring for suction stud G1
- R902083808: O-ring for suction stud G1 1/4

Coupling flange
There are specially modified coupling flanges in 4-hole and 6-hole designs for the cardan-shaft drive.

4-hole coupling flange, complete – Ø90
Material number: R902060152

6-hole coupling flange, complete – Ø100
Material number: R902060153

Note
The coupling flange is installed by screwing it onto the drive shaft with the help of the threaded bore in the end of the drive shaft.
The coupling flange must be glued onto the splined drive shaft with Loctite 574 and clamped (= 130 Nm). Sudden or abrupt forces acting on the drive shaft could lead to damage to the rotary group and must therefor be avoided.
Connector for solenoids

DEUTSCH DT04-2P-EP04
Molded, 2-pin, without bidirectional suppressor diode
There is the following type of protection with mounted mating connector:
▶ IP67 (DIN/EN 60529) and
▶ IP69K (DIN 40050-9)

▼ Circuit symbol

Mating connector
DEUTSCH DT06-2S-EP04
Bosch Rexroth Mat. No. R902601804

<table>
<thead>
<tr>
<th>Consisting of</th>
<th>DT designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 housing</td>
<td>DT06-2S-EP04</td>
</tr>
<tr>
<td>1 wedge</td>
<td>W2S</td>
</tr>
<tr>
<td>2 sockets</td>
<td>0462-201-16141</td>
</tr>
</tbody>
</table>

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Changing connector orientation
If necessary, you can change the connector orientation by turning the solenoid housing.
To do this, proceed as follows:
▶ Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
▶ Turn the solenoid body (2) to the desired orientation.
▶ Retighten the mounting nut. Tightening torque: 5+1 Nm. (WAF26, 12-sided DIN 3124)
On delivery, the connector orientation may differ from that shown in the brochure or drawing.
Installation instructions

General
During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain chamber is internally connected to the suction chamber. A case drain line from the case to the reservoir is not required. However, to ensure thermal stability, a case drain line from port "T" to the reservoir is generally required with the DRS controller.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction and case drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height h_S results from the overall loss of pressure; it must not, however, be higher than $h_{S\,max} = 800$ mm. The minimum suction pressure at port S must also not fall below 0.8 bar absolute during operation and during cold start.

Installation position
See the following examples 1 to 4.

Further installation positions are available upon request. Recommended installation position: 1 and 2.

Below-reservoir installation (standard)
Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Air bleed</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>M_S</td>
<td>S</td>
</tr>
</tbody>
</table>

Above-reservoir installation
Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Observe the maximum permissible suction height $h_{S\,max} = 800$ mm.

Installation position Air bleed Filling
3 R L
4 M_S L

Key
- L Filling / air bleed
- R Air bleed port
- S Suction port
- T Drain port (DRS only)
- SB Baffle (baffle plate)
- $h_{t\,min}$ Minimum required immersion depth (200 mm)
- h_{min} Minimum required spacing to reservoir bottom (100 mm)
- $h_{S\,max}$ Maximum permissible suction height (800 mm)
- M_S Measuring port suction pressure
- a_{min} When designing the reservoir, ensure adequate space between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.
Other related documents

Other pumps with special characteristics and dimensions for use in commercial vehicles can be found in the following data sheets:

- RE 91510: Fixed pump A17FNO, 250/300 bar
- RE 91520: Fixed pump A17FO, 300/350 bar
- RE 91540: 2-circuit fixed pump A18FDO, 350/400 bar
- RE 92260: Variable pump A17VO, 300/350 bar
- RE 92280: Variable pump A18VLO, 350/400 bar
General instructions

- The pump A18VO is designed to be used in open circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- Before finalizing your design, request a binding installation drawing.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- Pressure controls are not backups against pressure overload. A pressure-relief valve is to be provided in the hydraulic system.
- The following tightening torques apply:
 - Fittings:
 Observe the manufacturer's instructions regarding the tightening torques of the fittings used.
 - Mounting bolts:
 For mounting bolts with metric ISO threads according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.
 - Female threads in the axial piston unit:
 The maximum permissible tightening torques $M_{G \text{ max}}$ are maximum values of the female threads and must not be exceeded. For values, see the following table.
 - Threaded plugs:
 For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_v apply. For values, see the following table.

<table>
<thead>
<tr>
<th>Ports Standard</th>
<th>Size of thread</th>
<th>Maximum permissible tightening torque of the female threads $M_{G \text{ max}}$</th>
<th>Required tightening torque of the threaded plugs M_v</th>
<th>WAF Hexagon socket of the threaded plugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 38521)</td>
<td>M10 x 1</td>
<td>30 Nm</td>
<td>15 Nm2)</td>
<td>5 mm</td>
</tr>
<tr>
<td>ISO 11926</td>
<td>M12 x 1.5</td>
<td>50 Nm</td>
<td>25 Nm2)</td>
<td>6 mm</td>
</tr>
<tr>
<td>DIN ISO 228</td>
<td>M18 x 1.5</td>
<td>66 Nm</td>
<td>60 Nm</td>
<td>8 mm</td>
</tr>
<tr>
<td>G3/4</td>
<td>7/16-20UNF-2B</td>
<td>40 Nm</td>
<td>15 Nm</td>
<td>3/16 in</td>
</tr>
<tr>
<td>G1</td>
<td>480 Nm</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>G1 1/4</td>
<td>720 Nm</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

1) The tightening torques are valid for the delivery condition “dry” and for the installation-related, “lightly oiled” condition of the screw.
2) In the “lightly oiled” condition, the M_v is reduced to 10 Nm for M10 x 1 and to 17 Nm for M12 x 1.5.