Axial Piston Variable Pump
A11VO

Features
- Variable axial piston pump of swashplate design for hydrostatic drives in open circuit hydraulic system.
- Designed primarily for use in mobile applications.
- The pump operates under self-priming conditions, with tank pressurization, or with an optional built-in charge pump (impeller).
- A comprehensive range of control options is available matching any application requirement.
- Power control option is externally adjustable, even when the pump is running.
- The through drive is suitable for adding gear pumps and axial piston pumps up to the same, i.e. 100% through drive.
- The output flow is proportional to the drive speed and infinitely variable between \(q_{V_{\text{max}}} \) and \(q_{V_{\text{min}}} = 0 \).
Ordering Code / Standard Program

<table>
<thead>
<tr>
<th>A11V</th>
<th>O</th>
<th>/</th>
<th>1</th>
<th>-</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
</tr>
</tbody>
</table>

Axial piston unit

01 Swashplate design, variable, nominal pressure 350 bar, maximum pressure 400 bar

Charge pump (impeller)

<table>
<thead>
<tr>
<th>02 without charge pump (no code)</th>
<th>●●●●●●●●</th>
</tr>
</thead>
<tbody>
<tr>
<td>with charge pump</td>
<td>– – – – ●●●●●●●</td>
</tr>
</tbody>
</table>

Operation

03 Pump, open circuit

Size

04 ≈ Displacement $V_{g max}$ in cm³

Control unit

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>high-pressure related</td>
<td>negative</td>
<td>LR3</td>
<td>●●●●●●●●</td>
<td></td>
</tr>
<tr>
<td>pilot-pressure related</td>
<td>negative</td>
<td>LG1</td>
<td>●●●●●●●●</td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td>LG2</td>
<td>●●●●●●●●</td>
<td></td>
</tr>
<tr>
<td>electric</td>
<td>U = 12 V</td>
<td>negative</td>
<td>LE1</td>
<td>○ ○ ○ ○ ●●●●●●</td>
<td>LE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U = 24 V</td>
<td>negative</td>
<td>LE2</td>
<td>○ ○ ○ ○ ●●●●●●</td>
<td>LE2</td>
<td></td>
</tr>
<tr>
<td>with pressure cut-off</td>
<td>D</td>
<td>●●●●●●●●</td>
<td>L . D. .</td>
<td></td>
</tr>
<tr>
<td>hydraulic, 2-stage</td>
<td>E</td>
<td>●●●●●●●●</td>
<td>L . E. .</td>
<td></td>
</tr>
<tr>
<td>hydraulic, remote controlled</td>
<td>G</td>
<td>●●●●●●●●</td>
<td>L . G. .</td>
<td></td>
</tr>
<tr>
<td>with load sensing</td>
<td>S</td>
<td>●●●●●●●●</td>
<td>L . . S</td>
<td></td>
</tr>
<tr>
<td>electric, prop. override, 24 V</td>
<td>S2</td>
<td>○ ○ ○ ○ ●●●●●●</td>
<td>L . . S2</td>
<td></td>
</tr>
<tr>
<td>hydraulic, prop. override</td>
<td>S5</td>
<td>○ ○ ○ ○ ●●●●●●</td>
<td>L . . S3</td>
<td></td>
</tr>
<tr>
<td>with stroke limiter</td>
<td>negative</td>
<td>Δp = 25 bar</td>
<td>H1</td>
<td>●●●●●●●●</td>
<td>L . . H1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td>Δp = 10 bar</td>
<td>H5</td>
<td>●●●●●●●●</td>
<td>L . . H5</td>
<td></td>
</tr>
<tr>
<td>characteristic</td>
<td>Δp = 25 bar</td>
<td>H2</td>
<td>●●●●●●●●</td>
<td>L . . H2</td>
<td></td>
</tr>
<tr>
<td>Δp = 10 bar</td>
<td>H6</td>
<td>●●●●●●●●</td>
<td>L . . H6</td>
<td></td>
</tr>
<tr>
<td>U = 12 V</td>
<td>U1</td>
<td>●●●●●●●●</td>
<td>L . . U1</td>
<td></td>
</tr>
<tr>
<td>U = 24 V</td>
<td>U2</td>
<td>●●●●●●●●</td>
<td>L . . U2</td>
<td></td>
</tr>
<tr>
<td>Pressure control</td>
<td>DR</td>
<td>●●●●●●●●</td>
<td>DR</td>
<td></td>
</tr>
<tr>
<td>with load sensing</td>
<td>DRS</td>
<td>●●●●●●●●</td>
<td>DRS</td>
<td></td>
</tr>
<tr>
<td>remote controlled</td>
<td>DRG</td>
<td>●●●●●●●●</td>
<td>DRG</td>
<td></td>
</tr>
<tr>
<td>for parallel operation</td>
<td>DRL</td>
<td>●●●●●●●●</td>
<td>DRL</td>
<td></td>
</tr>
<tr>
<td>Hydraulic control, pilot-pressure related</td>
<td>Δp = 10 bar</td>
<td>HD1</td>
<td>●●●●●●●●</td>
<td>HD1</td>
<td></td>
</tr>
<tr>
<td>(positive characteristic)</td>
<td>Δp = 25 bar</td>
<td>HD2</td>
<td>●●●●●●●●</td>
<td>HD2</td>
<td></td>
</tr>
<tr>
<td>with pressure cut-off</td>
<td>D</td>
<td>●●●●●●●●</td>
<td>HD.D</td>
<td></td>
</tr>
<tr>
<td>with pressure cut-off, remote controlled</td>
<td>G</td>
<td>○ ○ ○ ○ ○ ○ ●●●●●●</td>
<td>HD. G</td>
<td></td>
</tr>
<tr>
<td>Electric control with proportional solenoid</td>
<td>U = 12 V</td>
<td>EP1</td>
<td>●●●●●●●●</td>
<td>EP1</td>
<td></td>
</tr>
<tr>
<td>(positive characteristic)</td>
<td>U = 24 V</td>
<td>EP2</td>
<td>●●●●●●●●</td>
<td>EP2</td>
<td></td>
</tr>
<tr>
<td>with pressure cut-off</td>
<td>D</td>
<td>●●●●●●●●</td>
<td>EP.D</td>
<td></td>
</tr>
<tr>
<td>with pressure cut-off, remote control</td>
<td>G</td>
<td>●●●●●●●●</td>
<td>EP.G</td>
<td></td>
</tr>
</tbody>
</table>

In case of controls with several additional functions, observe the order of the columns, only one option per column is possible (e.g. LRDCH2). The following combinations are not available for the power control: LRDS2, LRDS5, L...GS, L...GS2, L...GS5, L...EC and the combination L...DG in conjunction with the stroke limiters H1, H2, H5, H6, U1 and U2.
Ordering Code / Standard Program

<table>
<thead>
<tr>
<th>A11V</th>
<th>O</th>
<th>/</th>
<th>1</th>
<th>–</th>
<th>N</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td></td>
<td>06</td>
<td>07</td>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Series

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
</tr>
</tbody>
</table>

Direction of rotation

<table>
<thead>
<tr>
<th>Viewed from shaft end</th>
<th>clockwise</th>
<th>counter-clockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>R</td>
<td>L</td>
</tr>
</tbody>
</table>

Seals

<table>
<thead>
<tr>
<th>Shaft end (see page 8 for permissible input and through drive torques)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 NBR (nitrile-caoutchouc), shaft seal ring in FKM (fluor-caoutchouc)</td>
</tr>
</tbody>
</table>

Shaft end

<table>
<thead>
<tr>
<th>Splined shaft DIN 5480 for single and combination pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel keyed shaft DIN 6885</td>
</tr>
<tr>
<td>Splined shaft ANSI B92.1a–1976 for single pump</td>
</tr>
<tr>
<td>for combination pump</td>
</tr>
</tbody>
</table>

Mounting flange

<table>
<thead>
<tr>
<th>SAE J744 – 2-hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE J744 – 4-hole</td>
</tr>
<tr>
<td>SAE J617 2) (SAE 3)</td>
</tr>
</tbody>
</table>

Service line ports

<table>
<thead>
<tr>
<th>Pressure and suction port SAE, at side, opposite side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(with metric fastening threads)</td>
</tr>
</tbody>
</table>

Through drive (see page 58 for attachments)

<table>
<thead>
<tr>
<th>Flange SAE J744 3)</th>
<th>Coupler for splined shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>82-2 (A)</td>
<td>5/8in 9T 16/32DP (A)</td>
</tr>
<tr>
<td>3/4in 11T 16/32DP (A-B)</td>
<td></td>
</tr>
<tr>
<td>101-2 (B)</td>
<td>7/8in 13T 16/32DP (B)</td>
</tr>
<tr>
<td>1 in 15T 16/32DP (B-B)</td>
<td></td>
</tr>
<tr>
<td>W35</td>
<td>2x30x16x9g</td>
</tr>
<tr>
<td>W30</td>
<td>2x30x14x9g</td>
</tr>
<tr>
<td>W35</td>
<td>2x30x16x9g</td>
</tr>
<tr>
<td>127-2 (C) 4)</td>
<td>1 1/4in 14T 12/24DP (C)</td>
</tr>
<tr>
<td>1 1/2in 17T 12/24DP (C-C)</td>
<td></td>
</tr>
<tr>
<td>W30</td>
<td>2x30x14x9g</td>
</tr>
<tr>
<td>W35</td>
<td>2x30x16x9g</td>
</tr>
<tr>
<td>152-4 (D)</td>
<td>1 1/4in 14T 12/24DP (C)</td>
</tr>
<tr>
<td>1 3/4in 13T 8/16DP (D)</td>
<td></td>
</tr>
<tr>
<td>W40</td>
<td>2x30x18x9g</td>
</tr>
<tr>
<td>W45</td>
<td>2x30x21x9g</td>
</tr>
<tr>
<td>W50</td>
<td>2x30x24x9g</td>
</tr>
<tr>
<td>W60</td>
<td>2x30x28x9g</td>
</tr>
</tbody>
</table>

3) Coupler for splined shaft

4) Coupler for splined shaft

Z P S T C D G 12 K01 K02 K04 K07 K08 K09 K10 K17 K18 K19 K24 K26 K61 K62 K63 K65 K72 K84 K67
Ordering Code / Standard Program

Swivel angle indicator (page 59)

<table>
<thead>
<tr>
<th>A11VL</th>
<th>O</th>
<th>/</th>
<th>1</th>
<th>-</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
</tbody>
</table>

- **40**: without swivel angle indicator (no symbol)
- **60**: with optical swivel angle indicator
- **75**: with electric swivel angle sensor

Connector for solenoids (page 60)

<table>
<thead>
<tr>
<th>A11VL</th>
<th>O</th>
<th>/</th>
<th>1</th>
<th>-</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
</tbody>
</table>

- **40**: DEUTSCH connector molded, 2-pin – without suppressor diode

Standard / special version

<table>
<thead>
<tr>
<th>A11VL</th>
<th>O</th>
<th>/</th>
<th>1</th>
<th>-</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
</tbody>
</table>

- **15**: Standard version without symbol
- **16**: Special version combined with attachment part or attachment pump

1) **S**-shaft suitable for combination pump!
2) To fit the flywheel case of the combustion engine
3) 2 – 2-hole; 4 – 4-hole
4) Size 190 and 260 with 2 + 4-hole flange

- ● = available ○ = on request – = not available □ = preferred program
Technical Data

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (HF hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and operating conditions.

The variable pump A11VO is not suitable for operating with HFA, HFB and HFC. If HFD or environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and seals mentioned in RE 90221 and RE 90223 must be observed.

When ordering, please indicate the used hydraulic fluid.

Operating viscosity range

For optimum efficiency and service life, select an operating viscosity (at operating temperature) within the optimum range of ν_{opt} = optimum operating viscosity 16 to 36 mm²/s depending on the tank temperature (open circuit).

Limits of viscosity range

The limiting values for viscosity are as follows:

- ν_{min} = 5 mm²/s
 - Short-term ($t < 3$ min)
 - At max. perm. temperature of $t_{max} = +115^\circ$C.

- ν_{max} = 1600 mm²/s
 - Short-term ($t < 3$ min)
 - At cold start ($p \leq 30$ bar, $n \leq 1000$ rpm, $t_{min} = -40^\circ$C).
 - Only for starting up without load. Optimum operating viscosity must be reached within approx. 15 minutes.

Note that the maximum hydraulic fluid temperature of 115°C must not be exceeded locally either (e.g. in the bearing area). The temperature in the bearing area is – depending on pressure and speed – up to 5 K higher than the average case drain temperature.

Special measures are necessary in the temperature range from -40°C and -25°C (cold start phase), please contact us.

For detailed information about use at low temperatures, see RE 90300-03-B.

Selection diagram

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in an open circuit the tank temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt}) – see the shaded area of the selection diagram.

We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X°C an operating temperature of 60°C is set. In the optimum operating viscosity range (ν_{opt}; shaded area) this corresponds to the viscosity classes VG 46 and VG 68; to be selected: VG 68.

Please note:

The case drain temperature, which is affected by pressure and speed, is always higher than the tank temperature. At no point in the system may the temperature be higher than 115°C.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

Filtration

The finer the filtration, the higher the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston unit.

To ensure functional reliability of the axial piston unit, the hydraulic fluid must have a cleanliness level of at least 20/18/15 according to ISO 4406.

At very high hydraulic fluid temperatures (90°C to max. 115°C, not permitted for sizes 250 to 1000) at least cleanliness level 19/17/14 according to ISO 4406 is required.

If the above classes cannot be observed, please contact us.
Technical Data

Operating pressure range

Inlet
Absolute pressure at port S (suction port)
Version without charge pump
\[p_{\text{abs min}} = 0.8 \text{ bar} \]
\[p_{\text{abs max}} = 30 \text{ bar} \]

If the pressure is > 5 bar, please ask.
Version with charge pump
\[p_{\text{abs min}} = 0.6 \text{ bar} \]
\[p_{\text{abs max}} = 2 \text{ bar} \]

Maximum permissible speed (speed limit)
Permissible speed by increasing the inlet pressure \(p_{\text{abs}} \) at the suction port S or at \(V_g \leq V_{g \text{ max}} \)

Outlet
Pressure at port A or B
Nominal pressure \(p_{\text{N}} \)
Maximum pressure \(p_{\text{max}} \)

Nominal pressure: Max. design pressure at which fatigue strength is ensured.
Maximum pressure: Max. operating pressure which is permissible for short-term (t < 1s).

Minimum operating pressure
A minimum operating pressure \(p_{\text{B min}} \) is required in the pump service line depending on the speed, the swivel angle and the displacement (see diagram).

Case drain pressure
The case drain pressure at the ports \(T_1 \) and \(T_2 \) may be a maximum of 1.2 bar higher than the inlet pressure at the port S but not higher than
\[p_{L \text{ abs max}} = 2 \text{ bar} \]

An unrestricted, full size case drain line directly to tank is required.

Temperature range of the shaft seal ring
The FKM shaft seal ring is permissible for case drain temperatures of -25°C to +115°C.

Note:
For applications below -25°C, an NBR shaft seal ring is necessary (permissible temperature range: -40°C to +90°C).
State NBR shaft seal ring in clear text in the order.

Flushing the case
If a variable pump with control unit EP, HD, DR or stroke limiter (H., U.,) is operated over a long period (t > 10 min) with flow zero or operating pressure < 15 bar, flushing of the case via ports "T_1", "T_2" or "R" is necessary.

<table>
<thead>
<tr>
<th>Size</th>
<th>40</th>
<th>60</th>
<th>75</th>
<th>95</th>
<th>130</th>
<th>145</th>
<th>190</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_v \text{ flush (l/min)})</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Flushing the case is unnecessary in versions with charge pump (A11VLO), since a part of the charge flow is directed to the case.

Charge pump (impeller)
The charge pump is a circulating pump with which the A11VLO (size 130...260) is filled and therefore can be operated at higher speeds. This also simplifies cold starting at low temperatures and high viscosity of the hydraulic fluid. Tank charging is therefore unnecessary in most cases. A tank pressure of a max. 2 bar is permissible with charge pump.
Technical Data

Table of values

<table>
<thead>
<tr>
<th>Size</th>
<th>A11VO</th>
<th>40</th>
<th>60</th>
<th>75</th>
<th>95</th>
<th>130</th>
<th>145</th>
<th>190</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>V<sub>g max</sub> cm³</td>
<td>42</td>
<td>58.5</td>
<td>74</td>
<td>93.5</td>
<td>130</td>
<td>145</td>
<td>193</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>V<sub>g min</sub> cm³</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Speed</td>
<td>n<sub>max</sub> rpm</td>
<td>3000</td>
<td>2700</td>
<td>2550</td>
<td>2350</td>
<td>2100</td>
<td>2200</td>
<td>2100</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>n<sub>max1</sub> rpm</td>
<td>3500</td>
<td>3250</td>
<td>3000</td>
<td>2780</td>
<td>2500</td>
<td>2500</td>
<td>2100</td>
<td>2300</td>
</tr>
<tr>
<td>Flow</td>
<td>q<sub>v max</sub> l/min</td>
<td>126</td>
<td>158</td>
<td>189</td>
<td>220</td>
<td>273</td>
<td>319</td>
<td>405</td>
<td>468</td>
</tr>
<tr>
<td>Power at</td>
<td>P<sub>max</sub> kW</td>
<td>74</td>
<td>92</td>
<td>110</td>
<td>128</td>
<td>159</td>
<td>186</td>
<td>236</td>
<td>273</td>
</tr>
<tr>
<td>Torque at</td>
<td>T<sub>max</sub> Nm</td>
<td>234</td>
<td>326</td>
<td>412</td>
<td>521</td>
<td>724</td>
<td>808</td>
<td>1075</td>
<td>1448</td>
</tr>
<tr>
<td>Rotary stiffness</td>
<td>Z shaft Nm/rad</td>
<td>88894</td>
<td>102440</td>
<td>145836</td>
<td>199601</td>
<td>302495</td>
<td>302495</td>
<td>346190</td>
<td>686465</td>
</tr>
<tr>
<td></td>
<td>P shaft Nm/rad</td>
<td>87467</td>
<td>107888</td>
<td>143104</td>
<td>196435</td>
<td>312403</td>
<td>312403</td>
<td>383292</td>
<td>653835</td>
</tr>
<tr>
<td></td>
<td>S shaft Nm/rad</td>
<td>58347</td>
<td>86308</td>
<td>101921</td>
<td>173704</td>
<td>236861</td>
<td>236861</td>
<td>259773</td>
<td>352009</td>
</tr>
<tr>
<td></td>
<td>T shaft Nm/rad</td>
<td>74476</td>
<td>102440</td>
<td>125603</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>301928</td>
<td>567115</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>J<sub>TW</sub> kgm²</td>
<td>0.0048</td>
<td>0.0082</td>
<td>0.0115</td>
<td>0.0173</td>
<td>0.0318</td>
<td>0.0341</td>
<td>0.055</td>
<td>0.0878</td>
</tr>
<tr>
<td>Angular acceleration, max.</td>
<td>α rad/s²</td>
<td>22000</td>
<td>17500</td>
<td>15000</td>
<td>13000</td>
<td>10500</td>
<td>9000</td>
<td>6800</td>
<td>4800</td>
</tr>
<tr>
<td>Filling capacity</td>
<td>V l</td>
<td>1.1</td>
<td>1.35</td>
<td>1.85</td>
<td>2.1</td>
<td>2.9</td>
<td>2.9</td>
<td>3.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Mass (approx.)</td>
<td>m kg</td>
<td>32</td>
<td>40</td>
<td>45</td>
<td>53</td>
<td>66</td>
<td>76</td>
<td>95</td>
<td>125</td>
</tr>
</tbody>
</table>

Additional Notes

1) The values apply at absolute pressure (p_{abs}) of 1 bar at the suction port S and mineral hydraulic fluid.
2) The values apply at absolute pressure (p_{abs}) of at least 0.8 bar at the suction port S and mineral hydraulic fluid.
3) The values apply at V_g ≤ V_{g max} or in case of an increase in the inlet pressure p_{abs} at the suction port S (see diagram page 6).
4) The area of validity is situated between 0 and the maximum permissible speed.

Caution:
Exceeding the permissible limit values could cause a loss of function, reduced service life or the destruction of the axial piston unit. The permissible values can be determined by calculation.
Technical Data

Permissible radial and axial loading on drive shaft

The values stated are maximum data and not permissible for continuous operation

<table>
<thead>
<tr>
<th>Size</th>
<th>40</th>
<th>60</th>
<th>75</th>
<th>95</th>
<th>130</th>
<th>145</th>
<th>190</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_q max</td>
<td>N</td>
<td>3600</td>
<td>5000</td>
<td>6300</td>
<td>8000</td>
<td>11000</td>
<td>11000</td>
<td>16925</td>
</tr>
<tr>
<td>a mm</td>
<td>17.5</td>
<td>17.5</td>
<td>20</td>
<td>20</td>
<td>22.5</td>
<td>22.5</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>F_q max</td>
<td>N</td>
<td>2891</td>
<td>4046</td>
<td>4950</td>
<td>6334</td>
<td>8594</td>
<td>8594</td>
<td>13225</td>
</tr>
<tr>
<td>B mm</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>40</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>F_q max</td>
<td>N</td>
<td>2416</td>
<td>3398</td>
<td>4077</td>
<td>5242</td>
<td>7051</td>
<td>7051</td>
<td>10850</td>
</tr>
<tr>
<td>c mm</td>
<td>42.5</td>
<td>42.5</td>
<td>50</td>
<td>50</td>
<td>57.5</td>
<td>57.5</td>
<td>66</td>
<td>71</td>
</tr>
<tr>
<td>F_ax max</td>
<td>N</td>
<td>± 1500</td>
<td>2200</td>
<td>2750</td>
<td>3500</td>
<td>4800</td>
<td>4800</td>
<td>6000</td>
</tr>
</tbody>
</table>

Permissible input and through drive torques

<table>
<thead>
<tr>
<th>Size</th>
<th>40</th>
<th>60</th>
<th>75</th>
<th>95</th>
<th>130</th>
<th>145</th>
<th>190</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque (at V_g max and Δp = 350 bar 1)) T_max Nm</td>
<td>234</td>
<td>326</td>
<td>412</td>
<td>521</td>
<td>724</td>
<td>808</td>
<td>1075</td>
<td>1448</td>
</tr>
<tr>
<td>Input torque, max. 2)</td>
<td>468</td>
<td>648</td>
<td>824</td>
<td>1044</td>
<td>1448</td>
<td>1448</td>
<td>2226</td>
<td>2787</td>
</tr>
<tr>
<td>at shaft end P Shaft key DIN 6885 T_E perm. Nm</td>
<td>ø32</td>
<td>ø35</td>
<td>ø40</td>
<td>ø45</td>
<td>ø50</td>
<td>ø50</td>
<td>ø55</td>
<td>ø60</td>
</tr>
<tr>
<td>at Z shaft end DIN 5480 T_E perm. Nm</td>
<td>912</td>
<td>912</td>
<td>1460</td>
<td>2190</td>
<td>3140</td>
<td>3140</td>
<td>3140</td>
<td>5780</td>
</tr>
<tr>
<td>at S shaft end ANSI B92.1a-1976 (SAE J744) T_E perm. Nm</td>
<td>314</td>
<td>602</td>
<td>602</td>
<td>1640</td>
<td>1640</td>
<td>1640</td>
<td>1640</td>
<td>1640</td>
</tr>
<tr>
<td>at T shaft end ANSI B92.1a-1976 (SAE J744) T_E perm. Nm</td>
<td>602</td>
<td>970</td>
<td>970</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2670</td>
<td>4070</td>
</tr>
<tr>
<td>Through drive torque, max. 3) T_D perm. Nm</td>
<td>314</td>
<td>521</td>
<td>660</td>
<td>822</td>
<td>1110</td>
<td>1110</td>
<td>1760</td>
<td>2065</td>
</tr>
</tbody>
</table>

1) Efficiency not considered
2) For drive shafts with no radial force
3) Observe max. input torque for shaft S!

Torque distribution

Determining the nominal value

Flow \(q_v = \frac{V_g \cdot n \cdot \eta_v}{1000} \) l/min

Torque \(T = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} \) Nm

Power \(P = \frac{2 \pi \cdot T \cdot n}{60,000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t} \) kW

\(V_g \) = Displacement per revolution in cm³
\(\Delta p \) = Differential pressure in bar
\(n \) = Speed in rpm
\(\eta_v \) = Volumetric efficiency
\(\eta_{mh} \) = Mechanical-hydraulic efficiency
\(\eta_t \) = Overall efficiency (\(n_t = n_v \cdot n_{mh} \))
LR – Power Control

The power control regulates the displacement of the pump depending on the operating pressure so that a given drive power is not exceeded at constant drive speed.

\[p_B \cdot V_g = \text{constant} \]

\[p_B = \text{operating pressure} \]
\[V_g = \text{displacement} \]

The precise control with a hyperbolic control characteristic, provides an optimum utilization of available power.

The operating pressure acts on a rocker via a measuring piston. An externally adjustable spring force counteracts this, it determines the power setting.

If the operating pressure exceeds the set spring force, the control valve is actuated by the rocker, the pump swivels back (direction \(V_g \text{ min} \)). The lever length at the rocker is shortened and the operating pressure can increase at the same rate as the displacement decreases without the drive powers being exceeded (\(p_B \cdot V_g = \text{constant} \)).

The hydraulic output power (characteristic LR) is influenced by the efficiency of the pump.

State in clear text in the order:
- drive power \(P \) in kW
- drive speed \(n \) in rpm
- max. flow \(q_{v_{\text{max}}} \) in l/min

After clarifying the details a power diagram can be created by our computer.

Characteristic LR

![Circuit diagram LR](image-url)

Size 40 ... 145

Size 190 ... 260
LR – Power Control

LRC Override with cross sensing
Cross sensing control is a summation power control system, whereby the total power of both the A11VO and of a same size A11VO power controlled pump mounted onto the through drive, are kept constant.

If a pump is operating at pressures below the start of the control curve setting, then the surplus power not required, in a critical case up to 100%, becomes available to the other pump. Total power is thus divided between two systems as demand requires.

Any power being limited by means of pressure cut-off or other override functions is not taken into account.

Half side cross sensing function
When using the LRC control on the 1st pump (A11VO) and a power-controlled pump without cross sensing attached to the through drive, the power required for the 2nd pump is deducted from the setting of the 1st pump. The 2nd pump has priority in the total power setting.

The size and start of control of the power control of the 2nd pump must be specified for rating the control of the 1st pump.

Circuit diagram LRC
Size 40 ... 145

LR3 High-pressure related override
The high-pressure related power override is a total power control in which the power control setting is piloted by the load pressure of an attached fixed pump (port Z).

As a result the A11VO can be set to 100% of the total drive power. The power setting of the A11VO is reduced proportional to the load-dependent rise in operating pressure of the fixed pump. The fixed pump has priority in the total power setting.

The measuring area of the power reduction pilot piston is designed as a function of the size of the fixed pump.

Circuit diagram LR3
Size 40 ... 145

Size 190 ... 260
LR – Power Control

LG1/2 Pilot-pressure related override

This power control works by overriding the control setting with an external pilot pressure signal. This pilot pressure acts on the adjustment spring of the power regulator via port Z.

The mechanically adjusted basic setting can be hydraulically adjusted by means of different pilot pressure settings, enabling different power mode settings.

If the pilot pressure signal is then adjusted by means of an external power limiting control, the total hydraulic power consumption of all users can be adapted to the available drive power from the engine.

The pilot pressure used for power control is generated by an external control element that is not a component part of the A11VO (e.g. see also data sheet RE 95310, Electronic Load Limiting Control, LLC).

LG1 Negative power override

Power control with negative override, LG1: the force resulting from the pilot pressure is acting against the mechanical adjustment spring of the power control.

Increasing the pilot pressure reduces the power setting.

Circuit diagram LG1

Size 40 ... 145

LG2 Positive power override

Power control with positive override, LG2: the force resulting from the pilot pressure is additive the mechanical adjustment spring of the power control.

An increase in pilot pressure increases the power output.

Circuit diagram LG2

Size 40 ... 145
LR – Power Control

LE1/2 Electric override (negative)

Contrary to hydraulic power control override, the basic power setting is reduced by an electric pilot current applied to a proportional solenoid. The resulting force is acting against the mechanical power control adjustment spring.

The mechanically adjusted basic power setting can be varied by means of different control current settings.

Increase in current = decrease in power

If the pilot current signal is adjusted by a load limiting control the power consumption of all actuators will be reduced to match the available power from the diesel engine.

A 12V (LE1) or 24V (LE2) supply is required for the control of the proportion solenoid.

Technical data - Solenoids

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LE1</th>
<th>LE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12 V (±20 %)</td>
<td>24 V (±20 %)</td>
</tr>
<tr>
<td>Control current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of control</td>
<td>400 mA</td>
<td>200 mA</td>
</tr>
<tr>
<td>End of control</td>
<td>1200 mA</td>
<td>600 mA</td>
</tr>
<tr>
<td>Limiting current</td>
<td>1.54 A</td>
<td>0.77 A</td>
</tr>
<tr>
<td>Nominal resistance (at 20°C)</td>
<td>5.5 Ω</td>
<td>22.7 Ω</td>
</tr>
<tr>
<td>Dither frequency</td>
<td>100 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Actuated time</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection</td>
<td>see connector version, page 60</td>
<td></td>
</tr>
</tbody>
</table>

Overview of power overrides

Effect of power overrides at rising pressure or current
LR – Power Control

LRD Power control with pressure cut-off

The pressure cut-off corresponds to a pressure control which adjusts the pump displacement back to $V_g\min$, when the pressure setting is reached.

This function overrides the power control, i.e. below the preset pressure value, the power function is effective.

The pressure cut-off function is integrated into the pump control module and is preset to a specified value at the factory.

Setting range from 50 to 350 bar

Characteristic LRD

![Characteristic LRD Graph](image)

Circuit diagram LRD

Size 40...145

Size 190...260

LRE Power control with pressure cut-off, 2-stage

By connecting an external pilot pressure to port Y, the basic value of the pressure cut-off can be increased by 50 $+\Delta\nu$ bar and a 2nd pressure setting implemented.

This value is usually above the primary pressure relief valve setting and therefore disables the pressure cut-off function.

The pressure signal at port Y must be between 20 and 50 bar.

Characteristic LRE

![Characteristic LRE Graph](image)

Circuit diagram LRE

Size 40...145

Size 190...260

LRG Power control with pressure cut-off, hydraulically remote controlled

See page 21 for description and characteristic (pressure control remote controlled, DRG)
LR – Power Control

LRDS Power control with pressure cut-off and load sensing

The load sensing control is a flow control option that operates as a function of the load pressure to regulate the pump displacement to match the actuator flow requirement.

The flow depends here on the cross section of the external sensing orifice (1) fitted between the pump outlet and the actuator. The flow is independent of the load pressure below the power curve and the pressure cut-off setting and within the control range of the pump.

The sensing orifice is usually a separately arranged load sensing directional valve (control block). The position of the directional valve piston determines the opening cross section of the sensing orifice and thus the flow of the pump.

The load sensing control compares pressure before and after the sensing orifice and maintains the pressure drop across the orifice (differential pressure Δp) and with it the pump flow constant.

If the differential pressure Δp increases at the sensing orifice, the pump is swivelled back (towards V_g_min), and, if the differential pressure Δp decreases, the pump is swivelled out (towards V_g_max) until the pressure drop across the sensing orifice in the valve is restored.

$$\Delta p_{\text{orifice}} = p_{\text{pump}} - p_{\text{actuator}}$$

The setting range for Δp is between 14 bar and 25 bar.

The standard differential pressure setting is 18 bar. (Please state in clear text when ordering).

The stand-by pressure in zero stroke operation (sensing orifice plugged) is slightly above the Δp setting.

In a standard LS system the pressure cut-off is integrated in the pump control. In a LUDV (flow sharing) system the pressure cut-off is integrated in the LUDV control block.

(1) The sensing orifice (control block) is not included in the pump supply.

Characteristic LRDS

![Characteristic LRDS graph](image)

Circuit diagram LRDS

Size 40 ... 145

![Circuit diagram for size 40-145](image)

Size 190 ... 260

![Circuit diagram for size 190-260](image)
LR – Power Control

LRS2 Power control with load sensing, electric override

This control option adds a proportional solenoid to override to the mechanically set load sensing pressure. The pressure differential change is proportional to the solenoid current.

Increasing current = smaller Δp-setting

See following characteristic for details (example). Please consult us during the project planning phase.

For solenoid specification, see page 12 (LE2)

Characteristic LRS2

<table>
<thead>
<tr>
<th>Δp_{LS} in bar</th>
<th>Control current I in mA (at 24V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>18</td>
<td>300</td>
</tr>
<tr>
<td>14</td>
<td>400</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
</tr>
</tbody>
</table>

Circuit diagram LRS2

Size 40 ... 145

LRS5 Power control with load sensing, hydraulic override

This control option adds an external proportional pilot pressure signal (to port Z) to override the mechanically set load sensing pressure.

Increasing pilot pressure = smaller Δp-setting

See following characteristic for details (example). Please consult us during the project planning phase.

Characteristic LRS5

<table>
<thead>
<tr>
<th>Δp_{LS} in bar</th>
<th>Pilot pressure p_Z in bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Circuit diagram LRS5

Size 40 ... 145

Size 190 ... 260
LR – Power Control

LR... Power control with stroke limiter

The stroke limiter can be used to vary or limit the displacement of the pump continuously over the whole control range. The displacement is set in LRH with the pilot pressure p_{St} (max. 40 bar) applied to port Y or in LRU by the control current applied to the proportional solenoid. A DC current of 12V (U1) or 24V (U2) is required to control the proportional solenoid.

The power control overrides the stroke limiter control, i.e. below the hyperbolic power characteristic, the displacement is controlled by the control current or pilot pressure. When exceeding the power characteristic with a set flow or load pressure, the power control overrides and reduces the displacement following the hyperbolic characteristic.

To permit operation of the pump displacement control from its starting position $V_{g_{max}}$ to $V_{g_{min}}$, a minimum control pressure of 30 bar is required for the electric stroke limiter LRU1/2 and the hydraulic stroke limiter LRH2/6.

The required control pressure is taken either from the load pressure, or from the externally applied control pressure at the G port.

To ensure functioning of the stroke limiter even at low operating pressure, port G must be supplied with external control pressure of approx. 30 bar.

Note:
If no external control pressure is connected at G, the shuttle valve must be removed.

Note

The spring return feature in the controller is not a safety device

The spool valve inside the controller can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g. immediate stop).
LR – Power Control

LRH1/5 Hydraulic stroke limiter

(negative characteristic)

Control from \(V_g \max\) to \(V_g \min\)

With increasing pilot pressure the pump swivels to a smaller displacement.

Start of control (at \(V_g \max\)), can be set _______ from 4 – 10 bar

State start of control in clear text in the order.

Starting position without control signal (pilot pressure): \(V_g \max\)

Characteristic H1

Increase in pilot pressure \((V_g \max - V_g \min)\) \(\Delta p = 25\) bar

Characteristic H5

Increase in pilot pressure \((V_g \max - V_g \min)\) \(\Delta p = 10\) bar

Circuit diagram LRH1/5

Size 40 ... 145

Size 190 ... 260
LR – Power Control

LRH2/6 Hydraulic stroke limiter (positive characteristic)

Control from V_g_{min} to V_g_{max}

With increasing pilot pressure the pump swivels to a higher displacement.

Start of control (at V_g_{min}) can be set \[\text{__________}\] from 4–10 bar

State start of control in clear text in the order.

Starting position without control signal (pilot pressure):
- at operating pressure and external control pressure < 30 bar: V_g_{max}
- at operating pressure or external control pressure > 30 bar: V_g_{min}

Characteristic H2

Increase in pilot pressure $(V_g_{\text{min}} - V_g_{\text{max}}) \Delta p = 25$ bar

Characteristic H6

Increase in pilot pressure $(V_g_{\text{min}} - V_g_{\text{max}}) \Delta p = 10$ bar
LR – Power Control

LRU1/2 Electric stroke limiter (positive characteristic)

Control from \(V_{\text{g min}} \) to \(V_{\text{g max}} \)

With increasing control current the pump swivels to a higher displacement.

Technical data - solenoids

<table>
<thead>
<tr>
<th></th>
<th>LRU1</th>
<th>LRU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12 V (±20 %)</td>
<td>24 V (±20 %)</td>
</tr>
<tr>
<td>Control current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of control at (V_{\text{g max}})</td>
<td>400 mA</td>
<td>200 mA</td>
</tr>
<tr>
<td>End of control at (V_{\text{g min}})</td>
<td>1200 mA</td>
<td>600 mA</td>
</tr>
<tr>
<td>Limiting current</td>
<td>1.54 A</td>
<td>0.77 A</td>
</tr>
<tr>
<td>Nominal resistance (at 20°C)</td>
<td>5.5 Ω</td>
<td>22.7 Ω</td>
</tr>
<tr>
<td>Dither frequency</td>
<td>100 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Actuated time</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection</td>
<td>see connector version, page 60</td>
<td></td>
</tr>
</tbody>
</table>

Starting position without control signal (control current):

- at operating pressure and external control pressure
 \(< 30 \text{ bar}: V_{\text{g max}}\)
- at operating pressure or external control pressure
 \(> 30 \text{ bar}: V_{\text{g min}}\)

The following electronic controllers and amplifiers are available for actuating the proportional solenoids (see also www.boschrexroth.com/mobile-electronics):

- BODAS controller RC
 Series 20 RE 95200
 Series 21 RE 95201
 Series 22 RE 95202
 Series 30 RE 95203
 and application software

- Analog amplifier RA RE 95230
DR – Pressure Control

DR Pressure control

The pressure control keeps the pressure in a hydraulic system constant within its control range even under varying flow conditions. The variable pump only moves as much hydraulic fluid as is required by the actuators. If the operating pressure exceeds the setpoint set at the integral pressure control valve, the pump displacement is automatically swivelled back until the pressure deviation is corrected.

Starting position in depressurized state: V_g_{max}

Setting range from 50 to 350 bar.

Characteristic: DR

![Characteristic Graph]

Operating pressure p_B in bar
Flow q_v in L/min

Circuit diagram DR

Size 40 ... 145

Size 190 ... 260
DR – Pressure Control

DRS Pressure control with load sensing

The load sensing control is a flow control option that operates as a function of the load pressure to regulate the pump displacement to match the actuator flow requirement.

The flow depends here on the cross section of the external sensing orifice (1) fitted between the pump outlet and the actuator. The flow is independent of the load pressure below the pressure cut-off setting and within the control range of the pump.

The sensing orifice is usually a separately arranged load sensing directional valve (control block). The position of the directional valve piston determines the opening cross section of the sensing orifice and thus the flow of the pump.

The load sensing control compares pressure before and after the sensing orifice and maintains the pressure drop across the orifice (differential pressure Δp) and with it the pump flow constant.

If the differential pressure Δp increases at the sensing orifice, the pump is swivelled back (towards $V_{g \text{ min}}$), and, if the differential pressure Δp decreases, the pump is swivelled out (towards $V_{g \text{ max}}$) until the pressure drop across the sensing orifice in the valve is restored.

$$\Delta p_{\text{orifice}} = p_{\text{pump}} - p_{\text{actuator}}$$

The setting range for Δp is between 14 bar and 25 bar.

The standard differential pressure setting is 18 bar. (Please state in clear text when ordering).

The stand-by pressure in zero stroke operation (sensing orifice plugged) is slightly above the Δp setting.

(1) The sensing orifice (control block) is not included in the pump supply.

Characteristic: DRS

![Characteristic Graph]

Circuit diagram DRS

Size 40 ... 145

![Circuit Diagram 40-145]

Size 190 ... 260

![Circuit Diagram 190-260]
DR – Pressure Control

DRG Pressure control, remote controlled

The remote control pressure cut-off regulator permits the adjustment of the pressure setting by a remotely installed pressure relief valve (1). Pilot flow for this valve is provided by a fixed orifice in the control module.

Setting range from 50 to 350 bar.

In addition the pump can be unloaded into a standby pressure condition by an externally installed 2/2-way directional valve (2).

Both functions can be used individually or in combination (see circuit diagram).

The external valves are not included in the pump supply.

As a separate pressure relief valve (1) we recommend:

DBDH 6 (manual control), see RE 25402

Characteristic: DRG

<table>
<thead>
<tr>
<th>Operating pressure p_B in bar</th>
<th>Flow q_v in L/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>max 350</td>
<td></td>
</tr>
<tr>
<td>max 10</td>
<td></td>
</tr>
<tr>
<td>min 50</td>
<td></td>
</tr>
<tr>
<td>min 0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The remote controlled pressure cut-off is also possible in combination with LR, HD and EP.

Circuit diagram DRG

Size 40 ... 145

Size 190 ... 260
DR – Pressure Control

DRL Pressure control for parallel operation

The pressure control DRL is suitable for pressure control of several axial piston pumps A11VO in parallel operation pumping into a common pressure header.

The parallel pressure control has a pressure rise characteristic of approx. 15 bar from q_v_{max} to q_v_{min}. The pump regulates therefore to a pressure dependent swive angle. This results in stable control behavior, without the need of "staging" the individual pump compensators.

With the externally installed pressure relief valve (1) the nominal pressure setting of all pumps connected to the system is adjusted to the same value.

Setting range from 50 to 350 bar.

Each pump can be individually unloaded from the system by a separately installed 3/2-way directional valve (2).

The check valves (3) in the service line (port A) or control line (port X) must be provided generally.

The external valves are not included in the pump supply.

As a separate pressure relief valve (1) we recommend:

DBDH 6 (manual control), see RE 25402

Characteristic DRL

<table>
<thead>
<tr>
<th>Setting range</th>
<th>Flow q_v in L/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>max 350</td>
</tr>
<tr>
<td>150</td>
<td>max 335</td>
</tr>
<tr>
<td>300</td>
<td>max 165</td>
</tr>
<tr>
<td>350</td>
<td>max 15</td>
</tr>
</tbody>
</table>

Circuit diagram DRL

Size 40 ... 145

Size 190 ... 260
HD – Hydraulic Control, Pilot-Pressure Related

With the pilot-pressure related control the pump displacement is adjusted in proportion to the pilot pressure applied to port Y. Maximum permissible pilot pressure $p_{St_{max}} = 40$ bar.

Control from $V_{g_{min}}$ to $V_{g_{max}}$.

With increasing pilot pressure the pump swivels to a higher displacement.

Start of control (at $V_{g_{min}}$), can be set from 4 – 10 bar.

State start of control in clear text in the order.

Starting position without control signal (pilot pressure):
- at operating pressure and external control pressure < 30 bar: $V_{g_{max}}$
- at operating pressure or external control pressure > 30 bar: $V_{g_{min}}$

A control pressure of 30 bar is required to swivel the pump from its starting position $V_{g_{max}}$ to $V_{g_{min}}$.

The required control pressure is taken either from the load pressure, or from the externally applied control pressure at the G port.

To ensure the control even at low operating pressure < 30 bar the port G must be supplied with an external control pressure of approx. 30 bar.

Note:
If no external control pressure is connected at G, the shuttle valve must be removed.

Note:

The spring return feature in the controller is not a safety device

The spool valve inside the controller can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g. immediate stop).
HD – Hydraulic Control, Pilot-Pressure Related

HD.D Hydraulic control with pressure cut-off

The pressure cut-off corresponds to a pressure control which adjusts the pump displacement back to $V_{g\text{ min}}$ when the pressure setting is reached.

This function overrides the HD control, i.e. the pilot-pressure related displacement control is functional below the pressure setting.

The pressure cut-off function is integrated into the pump control module and is preset to a specified value at the factory.

Setting range from 50 to 350 bar.

Pressure cut-off characteristic D

<table>
<thead>
<tr>
<th>Operating pressure p_B in bar</th>
<th>Flow q_v in L/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>max 10 bar</td>
</tr>
<tr>
<td>50</td>
<td>max</td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

Circuit diagram HD.D

Size 40 ... 145

Size 190 ... 260
EP – Electric Control with Proportional Solenoid

With the electric control with proportional solenoid, the pump displacement is adjusted proportionally to the solenoid current, resulting in a magnetic control force, acting directly onto the control spool that pilots the pump control piston.

Control from \(V_g \text{ min} \) to \(V_g \text{ max} \)

With increasing control current the pump swivels to a higher displacement.

Starting position without control signal (control current):
- at operating pressure and external control pressure \(< 30 \text{ bar}: V_g \text{ max} \)
- at operating pressure or external control pressure \(> 30 \text{ bar}: V_g \text{ min} \)

A control pressure of \(30 \text{ bar} \) is required to swivel the pump from its starting position \(V_g \text{ max} \) to \(V_g \text{ min} \).

The required control pressure is taken either from the load pressure, or from the externally applied control pressure at port \(G \).

To ensure the control even at low operating pressure \(< 30 \text{ bar} \) the port \(G \) must be supplied with an external control pressure of approx. \(30 \text{ bar} \).

Note:

If no external control pressure is connected at \(G \), the shuttle valve must be removed.

Note:

Install pump with EP control in the oil tank only when using mineral hydraulic oils and an oil temperature in the tank of max. \(80^\circ \text{C} \).

The following electronic control units and amplifiers are available for actuating the proportional solenoids (see also www.boschrexroth.com/mobilelektronik):

- BODAS controller RC
 - Series 20 RD 95200
 - Series 21 RD 95201
 - Series 22 RD 95202
 - Series 30 RD 95203
 - and application software
- Analog amplifier RA RE 95230

Technical data, solenoid at EP1, EP2

<table>
<thead>
<tr>
<th>EP1</th>
<th>EP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>12 V (±20 %)</td>
</tr>
<tr>
<td>Control current</td>
<td></td>
</tr>
<tr>
<td>Start of control at (V_g \text{ min})</td>
<td>400 mA</td>
</tr>
<tr>
<td>End of control at (V_g \text{ max})</td>
<td>1200 mA</td>
</tr>
<tr>
<td>Limiting current</td>
<td>1.54 A</td>
</tr>
<tr>
<td>Nominal resistance (at (20^\circ \text{C}))</td>
<td>5.5 Ω</td>
</tr>
<tr>
<td>Dither frequency</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Actuated time</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection</td>
<td>see connector version, page 60</td>
</tr>
</tbody>
</table>

Note

The spring return feature in the controller is not a safety device

The spool valve inside the controller can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g. immediate stop).

Characteristic EP1/2

![Characteristic EP1/2](image)

Circuit diagram EP1/2

![Circuit diagram EP1/2](image)
EP – Electric Control with Proportional Solenoid

EP.D Electric control with pressure cut-off

The pressure cut-off corresponds to a pressure control which adjusts the pump displacement back to \(V_{g\min} \) when the pressure setting is reached.

This function overrides the EP control, i.e. the control current related displacement control is functional below the pressure setting.

The valve for the pressure cut-off is integrated in the control case and is set to a fixed specified pressure value at the factory.

Setting range from 50 to 350 bar

Pressure cut-off characteristic D

![Pressure cut-off characteristic D diagram](image)

Operating pressure \(p_{\text{B}} \) in bar
Setting range
Flow \(q_{v} \) in L/min

Setting range from 50 to 350 bar

Circuit diagram EP.D

Size 40 ... 145

Size 190 ... 260
Dimensions, Size 40

LRDCS
Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 40

Shaft ends

Z Splined shaft DIN 5480
W35x23x30x16x9g

P Parallel keyed shaft DIN 6885,
AS10x8x56

S Splined shaft SAE J744
1 in 15T 16/32

T Splined shaft SAE J744
1 1/4 in 14T 12/24DP

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size</th>
<th>Max. pressure (bar)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line port</td>
<td>SAE J518 DIN 13</td>
<td>3/4 in M10x1.5; 16 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction port</td>
<td>SAE J518 DIN 13</td>
<td>2 in M12x1.75; 17 deep</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>T1, T2</td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M22x1.5; 14 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M22x1.5; 14 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>M1</td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measurement point, service line port</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port in version with load sensing (S) and remote controlled pressure cut-off (G)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port in version with stroke limiter (H...), 2-stage pressure cut-off (E) and HD</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port in version with cross sensing (C) and power override (LR3)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller) in version with stroke limiter (H.., U2), HD and EP with screw union GE10 - PLM (otherwise closed)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread acc. to DIN 13)
2) For max. tightening torque, please refer to general notes on page 64
3) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4) Depending on adjustment data and operating pressure
5) Depending on installation position, T1 or T2 must be connected (see also page 61)

O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)
Dimensions, Size 40

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

```
248
58
131
131
106
153
5.5
21

Y
G
D
H1/5 LR
```

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

```
248
60
131
131
106
153
21.5

Y
G
D
H2/6 LR
```

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

```
248
29
206
131
131
106
153
5.5
21

Y
G
D
U1/2 LR
```

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

```
290
52
228
140
111
110
21

Z
X
D
LR3
```

LG1E
Power control with pilot-pressure related override (negative) and 2-stage pressure cut-off

```
248
70.5
35
1075
131

Y
Z
```

LG2E
Power control with pilot-pressure related override (positive) and 2-stage pressure cut-off

```
248
56
21
115

Y
Z
```

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 40

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 60

LRDCS
Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 60

Shaft ends

- **Z**: Splined shaft DIN 5480
 W35x2x30x16x9g

- **P**: Parallel keyed shaft DIN 6885, AS10x8x56

- **S**: Splined shaft SAE J744
 1 1/4 in 14T 12/24DP

- **T**: Splined shaft SAE J744
 1 3/8 in 21T 16/32DP

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size 2)</th>
<th>Max. pressure (bar) 4)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line port, fixing thread</td>
<td>SAE J518</td>
<td>3/4 in</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction port, fixing thread</td>
<td>SAE J518</td>
<td>2 in</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>T1, T2</td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M22x1.5;</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M22x1.5;</td>
<td>14 deep</td>
<td></td>
</tr>
<tr>
<td>M1, M</td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5;</td>
<td>12 deep</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port, in version with load sensing (S) and remote controlled pressure cut-off (G)</td>
<td>DIN 3852</td>
<td>M14x1.5;</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port, in version with stroke limiter (H...), 2-stage pressure cut-off (E) and HD</td>
<td>DIN 3852</td>
<td>M14x1.5;</td>
<td>12 deep</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port, in version with cross sensing (C) and power override (LG3) and power override (LG1)</td>
<td>DIN 3852</td>
<td>M14x1.5;</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller) in version with stroke limiter (H...), HD and EP with screw union GE10 · PLM (otherwise closed)</td>
<td>DIN 3852</td>
<td>M14x1.5;</td>
<td>400</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread acc. to DIN 13)
2) For max. tightening torque, please refer to general notes on page 64
3) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4) Depending on adjustment data and operating pressure
5) Depending on installation position, T1 or T2 must be connected (see also page 61)

O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)
Before finalizing your design, please request a certified drawing. Dimensions in mm.

Dimensions, Size 60

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

![LRDH1/LRDH5 Diagram]

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

![LRDH2/LRDH6 Diagram]

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

![LRDU1/LRDU2 Diagram]

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

![LR3DS Diagram]

LG1E
Power control with pilot-pressure related override (negative) and 2-stage pressure cut-off

![LG1E Diagram]

LG2E
Power control with pilot-pressure related override (positive) and 2-stage pressure cut-off

![LG2E Diagram]
Dimensions, Size 60

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 75

LRDCS

Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 75

Shaft ends

Z Splined shaft DIN 5480
W40x2x30x18x9g

P Parallel keyed shaft DIN 6885
AS12x8x80

S Splined shaft SAE J744
1 1/4 in 14T 12/24DP

T Splined shaft SAE J744
1 3/8 in 21T 16/32DP

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size</th>
<th>Max. pressure (bar)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line port</td>
<td>SAE J518</td>
<td>1 in</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction port</td>
<td>SAE J518</td>
<td>2 1/2in</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>T₁, T₂</td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M22x1.5; 14 deep</td>
<td>10</td>
<td>5)</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M22x1.5; 14 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>M₁</td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measurement point, service line port</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port in version with load sensing (S) and remote controlled pressure cut-off (G)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port in version with stroke limiter (H...), 2-stage pressure cut-off (E) and HD</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port in version with cross sensing (C) and power override (LR3)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller) in version with stroke limiter (H... U2), HD and EP with screw union GE10 - PLM</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread acc. to DIN 13)
2) For max. tightening torque, please refer to general notes on page 64
3) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4) Depending on adjustment data and operating pressure
5) Depending on installation position, T1 or T2 must be connected (see also page 61)

O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)
Dimensions, Size 75

Before finalizing your design, please request a certified drawing. Dimensions in mm.

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

LG1E
Power control with pilot-pressure related override (negative) and 2-stage pressure cut-off

LG2E
Power control with pilot-pressure related override (positive) and 2-stage pressure cut-off
Dimensions, Size 75

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 95

LRDCS

Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.

1) Dimensions according to SAE J617-No. 3, for connection to the flywheel case of the combustion engine
Dimensions, Size 95

Shaft ends

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Splined shaft DIN 5480 W45x2x30x21x9g</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Parallel keyed shaft DIN 6885 – AS14x9x80</td>
<td></td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size<sup>2</sup></th>
<th>Max. pressure (bar)<sup>4</sup></th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line port</td>
<td>SAE J518</td>
<td>1 in M12x1.75; 17 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction port</td>
<td>SAE J518</td>
<td>3 in M16x2; 24 deep</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>T<sub>1</sub>, T<sub>2</sub></td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M26x1.5; 16 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M26x1.5; 16 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>M<sub>1</sub></td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measurement point, service line port</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread acc. to DIN 13)
2) For max. tightening torque, please refer to general notes on page 64
3) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4) Depending on adjustment data and operating pressure
5) Depending on installation position, T1 or T2 must be connected (see also page 61)

O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)
Dimensions, Size 95

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

LG1E
Power control with pilot-pressure related override (negative) and 2-stage pressure cut-off

LG2E
Power control with pilot-pressure related override (positive) and 2-stage pressure cut-off

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 95

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 130/145

LRDCS
Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.

Flange SAE J744 152-4 (D)

View Y clockwise rotation (counter-clockwise rotation)

Center of gravity

Flange SAE J617 (SAE 3)

without charge pump
Detail W
Detail V

with charge pump
Detail W
Detail V

1) Dimensions according to SAE J617-No. 3, for connection to the flywheel case of the combustion engine
2) The case or length dimension with flange SAE 3 is 5 mm shorter than the standard case.
Dimensions, Size 130/145

Shaft ends

Z Splined shaft DIN 5480
W50x2x30x24x9g

S Splined shaft SAE J744
1 3/4 in 13T 8/16DP

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size(^2)</th>
<th>Max. pressure (bar) (^4)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Service line port</td>
<td>SAE J518 DIN 13</td>
<td>1 in M12x1.75; 17 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>A(_1)</td>
<td>Service line port</td>
<td>SAE J518 DIN 13</td>
<td>1 1/4 in M14x2; 19 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S, S(_1)</td>
<td>Suction port</td>
<td>SAE J518 DIN 13</td>
<td>3 in M16x2; 24 deep</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>T(_1), T(_2)</td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M26x1.5; 16 deep</td>
<td>10</td>
<td>5)</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M26x1.5; 16 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>M(_1)</td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measurement point, service line port</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port in version with load sensing (S) and remote controlled pressure cut-off (G)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port in version with stroke limiter (H...), 2-stage pressure cut-off (E) and HD</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port in version with cross sensing (C) and power override (LR3) power override (LG1)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller) in version with stroke limiter (H(_1), U2), HD and EP with screw union GE10 · PLM (otherwise closed)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread acc. to DIN 13)
2) For max. tightening torque, please refer to general notes on page 64
3) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4) Depending on adjustment data and operating pressure
5) Depending on installation position, T1 or T2 must be connected (see also page 61)
6) with charge pump
O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)
Before finalizing your design, please request a certified drawing. Dimensions in mm.

Dimensions, Size 130/145

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

LG1E
Power control with pilot-pressure related override (negative) and 2-stage pressure cut-off

LG2E
Power control with pilot-pressure related override (positive) and 2-stage pressure cut-off
Dimensions, Size 130/145

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
LRDCS
Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.

1) Dimensions according to SAE J617- No. 3, for connection to the flywheel case of the combustion engine
2) The case or length dimension with flange SAE 3 is 5 mm shorter than the standard case.
Dimensions, Size 190

Shaft ends

Z Splined shaft DIN 5480
W50x2x30x24x9g

P Parallel keyed shaft DIN 6885,
AS16x10x100

S Splined shaft SAE J744
1 3/4 in 13T 8/16DP

T Splined shaft SAE J744
2 in 15T 8/16DP

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size</th>
<th>Max. pressure (bar)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A₁</td>
<td>Service line port</td>
<td>SAE J518</td>
<td>1 1/2 in</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Fixing thread</td>
<td>DIN 13</td>
<td>M16x2; 21 deep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S₁, S₁</td>
<td>Suction port</td>
<td>SAE J518</td>
<td>3 1/2 in</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Fixing thread</td>
<td>DIN 13</td>
<td>M16x2; 24 deep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁, T₂</td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M33x2; 18 deep</td>
<td>10</td>
<td>5)</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M33x2; 18 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>M₁</td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measurement point, service line port</td>
<td>DIN 3852</td>
<td>M12x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port in version with load sensing (S) and remote controlled pressure cut-off (G)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port in version with stroke limiter (H...), 2-stage pressure cut-off (E) and HD</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port in version with cross sensing (C) and power override (LR3) power override (LG1)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller) in version with stroke limiter (H... U2), HD and EP with screw union GE10 - PLM (otherwise closed)</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Center bore according to DIN 332 (thread acc. to DIN 13)
2) For max. tightening torque, please refer to general notes on page 64
3) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4) Depending on adjustment data and operating pressure
5) Depending on installation position, T1 or T2 must be connected (see also page 61)
6) with charge pump

O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 190

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

LG1EH
Power control with pilot-pressure related override (neg.), 2-stage pressure cut-off and hydr. stroke limiter

LG2EH
Power control with pilot-pressure related override (pos.), 2-stage pressure cut-off and hydr. stroke limiter

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 190

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 260

LRDCS
Power control LR with pressure cut-off D, cross sensing control C and load sensing control S

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 260

Shaft ends

Z Splined shaft DIN 5480
W60x2x30x28x9g

P Parallel keyed shaft DIN 6885,
AS18x11x100

S Splined shaft SAE J744
1 3/4 in 13T 8/16DP

T Splined shaft SAE J744
2 1/4 in 17T 6/16DP

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
<th>Standard</th>
<th>Size</th>
<th>Max. pressure (bar)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A₁</td>
<td>Service line port Fixing thread</td>
<td>SAE J518 DIN 13</td>
<td>1 1/2 in, 21 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction port Fixing thread</td>
<td>SAE J518 DIN 13</td>
<td>3 1/2 in, 24 deep</td>
<td>30</td>
<td>O</td>
</tr>
<tr>
<td>S₁</td>
<td>Suction port Fixing thread</td>
<td>SAE J518 DIN 13</td>
<td>3/4 in, 21 deep</td>
<td>26</td>
<td>O</td>
</tr>
<tr>
<td>T₁, T₂</td>
<td>Tank port</td>
<td>DIN 3852</td>
<td>M33x2, 16 deep</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>R</td>
<td>Air bleed</td>
<td>DIN 3852</td>
<td>M33x2, 16 deep</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>M₁</td>
<td>Measurement point, positioning chamber</td>
<td>DIN 3852</td>
<td>M12x1.5, 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measurement point, service line port</td>
<td>DIN 3852</td>
<td>M12x1.5, 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Pilot pressure port in version with load sensing (S) and remote controlled pressure cut-off (G)</td>
<td>DIN 3852</td>
<td>M14x1.5, 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>Y</td>
<td>Pilot pressure port in version with stroke limiter (H,), 2-stage pressure cut-off (E) and HD</td>
<td>DIN 3852</td>
<td>M14x1.5, 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
<tr>
<td>Z</td>
<td>Pilot pressure port in version with cross sensing (C) and power override (LG3)</td>
<td>DIN 3852</td>
<td>M14x1.5, 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>G</td>
<td>Port for control pressure (controller) in version with stroke limiter (H, U2), HD and EP with screw union GE10 - PLM (otherwise closed)</td>
<td>DIN 3852</td>
<td>M14x1.5, 12 deep</td>
<td>40</td>
<td>O</td>
</tr>
</tbody>
</table>

1 Center bore according to DIN 332 (thread acc. to DIN 13)
2 For max. tightening torque, please refer to general notes on page 64
3 ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
4 Depending on adjustment data and operating pressure
5 Depending on installation position, T₁ or T₂ must be connected (see also page 61)
6 With charge pump
O = Open, must be connected (closed on delivery)
X = Closed (in normal operation)
Dimensions, Size 260

LRDH1/LRDH5
Power control with pressure cut-off and hydraulic stroke limiter (negative characteristic)

LRDH2/LRDH6
Power control with pressure cut-off and hydraulic stroke limiter (positive characteristic)

LRDU1/LRDU2
Power control with pressure cut-off and electric stroke limiter (positive characteristic)

LR3DS
Power control with high-pressure related override, pressure cut-off and load sensing control

LG1EH
Power control with pilot-pressure related override (neg.), 2-stage pressure cut-off and hydr. stroke limiter

LG2EH
Power control with pilot-pressure related override (pos.), 2-stage pressure cut-off and hydr. stroke limiter

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Dimensions, Size 260

HD1D/HD2D
Hydraulic control, pilot-pressure related with pressure cut-off

EP1D/EP2D
Electric control with proportional solenoid and pressure cut-off

DRS/DRG
Pressure control with load sensing control
Pressure control remote controlled

DRL
Pressure control for parallel operation

LE1S/LE2S
Power control with electric override (negative) and load sensing control

LE2S2/LE1S5/LE2S5
Power control with electric override (negative) and load sensing control, override

Before finalizing your design, please request a certified drawing. Dimensions in mm.
Through Drive Dimensions

Flange SAE J744 – 82-2 (A)
Coupler for splined shaft acc. to ANSI B92.1a-1976
5/8 in 9T 16/32 DP
(SAE J744 – 16-4 (A))
K01

<table>
<thead>
<tr>
<th>Size</th>
<th>A1 (K01)</th>
<th>A2</th>
<th>A3 (K52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>240</td>
<td>240</td>
<td>8 M10x1.5; 15 deep</td>
</tr>
<tr>
<td>60</td>
<td>257</td>
<td>257</td>
<td>M10x1.5; 15 deep</td>
</tr>
<tr>
<td>75</td>
<td>275</td>
<td>275</td>
<td>M10x1.5; 15 deep</td>
</tr>
<tr>
<td>95</td>
<td>306</td>
<td>306</td>
<td>M10x1.5; 12.5 deep</td>
</tr>
<tr>
<td>130/145</td>
<td>329</td>
<td>329</td>
<td>M10x1.5; 12.5 deep</td>
</tr>
<tr>
<td>130/145*</td>
<td>363</td>
<td>363</td>
<td>M10x1.5; 12.5 deep</td>
</tr>
<tr>
<td>190</td>
<td>359.8</td>
<td>359.8</td>
<td>M10x1.5; 13 deep</td>
</tr>
<tr>
<td>190*</td>
<td>394</td>
<td>394</td>
<td>M10x1.5; 13 deep</td>
</tr>
<tr>
<td>260</td>
<td>385</td>
<td>385</td>
<td>M10x1.5; 13 deep</td>
</tr>
<tr>
<td>260*</td>
<td>427.3</td>
<td>427.3</td>
<td>M10x1.5; 13 deep</td>
</tr>
</tbody>
</table>

*) Version with charge pump

Flange SAE J744 – 101-2 (B)
Coupler for splined shaft acc. to ANSI B92.1a-1976
7/8 in 13T 16/32 DP
(SAE J744 – 22-4 (B))
K02

<table>
<thead>
<tr>
<th>Size</th>
<th>A1 (K02)</th>
<th>A2</th>
<th>A3 (K04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>244</td>
<td>244</td>
<td>10 M12x1.75; 19 deep</td>
</tr>
<tr>
<td>60</td>
<td>261</td>
<td>261</td>
<td>10 M12x1.75; 19 deep</td>
</tr>
<tr>
<td>75</td>
<td>279</td>
<td>279</td>
<td>10 M12x1.75; 19 deep</td>
</tr>
<tr>
<td>95</td>
<td>303</td>
<td>303</td>
<td>10 M12x1.75; 16 deep</td>
</tr>
<tr>
<td>130/145</td>
<td>326</td>
<td>326</td>
<td>10 M12x1.75; 16 deep</td>
</tr>
<tr>
<td>130/145*</td>
<td>360</td>
<td>360</td>
<td>10 M12x1.75; 16 deep</td>
</tr>
<tr>
<td>190</td>
<td>371.8</td>
<td>369.8</td>
<td>361.8 – M12x1.75; 15 deep</td>
</tr>
<tr>
<td>190*</td>
<td>404</td>
<td>404</td>
<td>– M12x1.75; 15 deep</td>
</tr>
<tr>
<td>260</td>
<td>395</td>
<td>395</td>
<td>– M12x1.75; 15 deep</td>
</tr>
<tr>
<td>260*</td>
<td>437.5</td>
<td>437.5</td>
<td>– M12x1.75; 15 deep</td>
</tr>
</tbody>
</table>

*) Version with charge pump

Flange SAE J744 – 127-2 (C)
Coupler for splined shaft acc. to ANSI B92.1a-1976
1 1/4 in 14T 12/24 DP
(SAE J744 – 32-4 (C))
K07

<table>
<thead>
<tr>
<th>Size</th>
<th>A1 (K07)</th>
<th>A2</th>
<th>A3 (K24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>272</td>
<td>272</td>
<td>13 M16x2; 20 deep</td>
</tr>
<tr>
<td>75</td>
<td>290</td>
<td>290</td>
<td>13 M16x2; 20 deep</td>
</tr>
<tr>
<td>95</td>
<td>318</td>
<td>318</td>
<td>13 M16x2; 16 deep</td>
</tr>
<tr>
<td>130/145</td>
<td>330</td>
<td>330</td>
<td>13 M16x2; 20 deep</td>
</tr>
<tr>
<td>130/145*</td>
<td>364</td>
<td>364</td>
<td>13 M16x2; 20 deep</td>
</tr>
</tbody>
</table>

*) Version with charge pump

Note:

The mounting flange may be turned through 90°. Standard position as illustrated. Please state in clear text if required.

1) 30° pressure angle, flat root, side fit, tolerance class 5
2) O-ring included in the delivery contents
3) DIN 13, for max. tightening torque, please refer to general notes on page 64
Through Drive Dimensions

Flange SAE J744–127-2+4 (A) Coupler for splined shaft acc. to ANSI B92.1a-1976 1 1/4 in 14T 12/24 DP\(^{1)}\) (SAE J744 – 32-4 (C) K07 1 1/2 in 17T 12/24 DP\(^{1)}\) (SAE J744 – 38-4 (C-C)) K24

Coupler for splined shaft acc. to DIN 5480

- **K07**: W30x2x30x14x9g
- **K24**: W35x2x30x16x9g

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3 (^{3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>367.8</td>
<td>367.8</td>
</tr>
<tr>
<td>190*</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>260</td>
<td>391.5</td>
<td>391.5</td>
</tr>
<tr>
<td>260*</td>
<td>433.5</td>
<td>433.5</td>
</tr>
</tbody>
</table>

\(^{1)}\) Version with charge pump

Note:
The mounting flange may be turned through 90°. Standard position as illustrated. Please state in clear text if required.

\(^{1)}\) 30° pressure angle, flat root, side fit, tolerance class 5

\(^{2)}\) O-ring included in the delivery contents

\(^{3)}\) DIN 13, for max. tightening torque, please refer to general notes on page 64
Overview of Attachments for A11V(L)O

Through drive A11VO Attachment – 2nd pump

<table>
<thead>
<tr>
<th>Flange</th>
<th>Coupler for splined shaft</th>
<th>Code</th>
<th>A11VO</th>
<th>A10V(S)/O31</th>
<th>Attachment – 2nd pump</th>
<th>A4FO</th>
<th>A4VG</th>
<th>A10VG</th>
<th>External gear pump</th>
<th>Through drive available for size</th>
</tr>
</thead>
<tbody>
<tr>
<td>82-2 (A)</td>
<td>5/8 in</td>
<td>K01</td>
<td>–</td>
<td>18 (U)</td>
<td>10 (U)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3/4 in</td>
<td>K52</td>
<td>–</td>
<td>18 (S)</td>
<td>10 (S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>101-2 (B)</td>
<td>7/8 in</td>
<td>K02</td>
<td>–</td>
<td>28 (S, R)</td>
<td>28 (S, R)</td>
<td>16, 22, 28 (S)</td>
<td>–</td>
<td>18 (S)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1 in</td>
<td>K04</td>
<td>40 (S)</td>
<td>45 (S, R)</td>
<td>45 (S, R)</td>
<td>60 (U, W)</td>
<td>40, 56, 71 (S)</td>
<td>63 (S)</td>
<td>–</td>
<td>60...260</td>
<td></td>
</tr>
<tr>
<td>1 1/2</td>
<td>K07</td>
<td>60 (S)</td>
<td>71 (S, R)</td>
<td>60 (S) 2)</td>
<td>60 (S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>95...260</td>
</tr>
<tr>
<td>1 1/2</td>
<td>K84</td>
<td>100 (S)</td>
<td>85 (S)</td>
<td>85 (U)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>60...260</td>
</tr>
<tr>
<td>1 1/2</td>
<td>W35</td>
<td>60 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>60...260</td>
</tr>
<tr>
<td>1 1/4</td>
<td>K08</td>
<td>75 (S)</td>
<td>95, 130, 145 (S)</td>
<td>95 (S)</td>
<td>130 (S)</td>
<td>145 (S)</td>
<td>145 (S)</td>
<td>130 (S)</td>
<td>–</td>
<td>130...260</td>
</tr>
<tr>
<td>1 1/4</td>
<td>W30</td>
<td>75 (Z)</td>
<td>95 (Z)</td>
<td>125 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>130...260</td>
</tr>
<tr>
<td>1 1/4</td>
<td>K61</td>
<td>60 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>60...260</td>
</tr>
<tr>
<td>1 3/4</td>
<td>K86</td>
<td>75 (S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>75...260</td>
</tr>
<tr>
<td>1 3/4</td>
<td>K17</td>
<td>95, 130, 145 (S)</td>
<td>140 (S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>130...260</td>
</tr>
<tr>
<td>1 3/4</td>
<td>K87</td>
<td>75 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>130...260</td>
</tr>
<tr>
<td>1 3/4</td>
<td>W40</td>
<td>95 (Z)</td>
<td>–</td>
<td>90, 125 (S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>75...260</td>
</tr>
<tr>
<td>1 3/4</td>
<td>W45</td>
<td>95 (Z)</td>
<td>–</td>
<td>90, 125 (A)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>95...260</td>
</tr>
<tr>
<td>1 3/4</td>
<td>W50</td>
<td>130, 145 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>130...260</td>
</tr>
<tr>
<td>3/4 in</td>
<td>K72</td>
<td>190, 260 (S)</td>
<td>–</td>
<td>180, 250 (S)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>190...260</td>
</tr>
<tr>
<td>3/4 in</td>
<td>K84</td>
<td>190 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>190...260</td>
</tr>
<tr>
<td>3/4 in</td>
<td>W60</td>
<td>260 (Z)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>260...</td>
</tr>
</tbody>
</table>

1) Rexroth recommends special versions of the gear pumps. Please ask.
2) Only A10VO with 4-hole mounting flange can be mounted to A11V(L)O 190 and 260.

Combination Pumps A11VO + A11VO

Total length A 1)

<table>
<thead>
<tr>
<th>A11VO</th>
<th>2nd pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st pump</td>
<td>Size 40</td>
</tr>
<tr>
<td>Size 40</td>
<td>–</td>
</tr>
<tr>
<td>Size 60</td>
<td>490</td>
</tr>
<tr>
<td>Size 75</td>
<td>–</td>
</tr>
<tr>
<td>Size 95</td>
<td>528</td>
</tr>
<tr>
<td>Size 130/145</td>
<td>551</td>
</tr>
<tr>
<td>Size 130/145 2)</td>
<td>585</td>
</tr>
<tr>
<td>Size 190</td>
<td>586.8</td>
</tr>
<tr>
<td>Size 190 2)</td>
<td>619</td>
</tr>
<tr>
<td>Size 260</td>
<td>620</td>
</tr>
<tr>
<td>Size 260 2)</td>
<td>662.5</td>
</tr>
</tbody>
</table>

1) When using the Z shaft (splined shaft DIN 5480) for the attached pump (2nd pump)
2) Version with charge pump

When ordering combination pumps, the type designations of the 1st and 2nd pumps must be connected by a "+".
Ordering code 1st pump + Ordering code 2nd pump

Ordering example:
A11VO130LRDS/10R-NZD12K61 + A11VO60LRDS/10R-NZC12N00
Swivel Angle Indicator

Optical swivel angle indicator, V

With the optical swivel angle indicator, a mechanical pointer on the side of the pump case displays the position of the swivel angle of the pump.

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>50.5</td>
<td>84.0</td>
</tr>
<tr>
<td>75</td>
<td>60.7</td>
<td>97.0</td>
</tr>
<tr>
<td>95</td>
<td>63.5</td>
<td>104.0</td>
</tr>
<tr>
<td>130</td>
<td>70.9</td>
<td>112.0</td>
</tr>
<tr>
<td>190</td>
<td>87.6</td>
<td>123.5</td>
</tr>
<tr>
<td>260</td>
<td>87.6</td>
<td>137.0</td>
</tr>
</tbody>
</table>

Electric swivel angle sensor, R

With the electric swivel angle indicator the swivel position of the pump is measured by an electric swivel angle sensor. It has a robust, sealed case and integrated electronics designed for automotive applications.

As an output the Hall effect swivel angle sensor supplies a voltage signal proportional to the swivel angle (see technical parameters).

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>50.5</td>
<td>88.5</td>
<td>118.3</td>
</tr>
<tr>
<td>75</td>
<td>60.7</td>
<td>98.7</td>
<td>131.3</td>
</tr>
<tr>
<td>95</td>
<td>63.5</td>
<td>101.5</td>
<td>138.3</td>
</tr>
<tr>
<td>130</td>
<td>70.9</td>
<td>108.9</td>
<td>146.3</td>
</tr>
<tr>
<td>190</td>
<td>87.6</td>
<td>125.6</td>
<td>157.8</td>
</tr>
<tr>
<td>260</td>
<td>87.6</td>
<td>125.6</td>
<td>171.3</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Supply voltage U_b</th>
<th>Output voltage U_a</th>
<th>Reverse-connect protection</th>
<th>EMC stability</th>
<th>Operating temperature range</th>
<th>Vibration resistance</th>
<th>Shock resistance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10...30 V DC</td>
<td>$2.5 \text{ V} (V_g \text{ min})$</td>
<td>Short-circuit-proof</td>
<td>Details on request</td>
<td>-40°C...$+125^\circ\text{C}$</td>
<td>$10 \text{ g }/5...2000 \text{ Hz}$</td>
<td>Continuous shock:</td>
</tr>
<tr>
<td></td>
<td>$4.5 \text{ V} (V_g \text{ max})$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IEC 68-2-29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resistance to salt spray:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIN 50021-SS 96 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Type of protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIN/EN 60529 IP67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and IP69K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Case material</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>synthetic material</td>
</tr>
</tbody>
</table>

Mating connector

AMP Superseal 1.5; 3-pin, Rexroth mat. no. R902602132
Consisting of:
- 1 female connector case, 3-pin ___________ 282087-1
- 3 single wire seals, yellow ___________ 281934-2
- 3 female connector contacts 1.8–3.3 mm ___________ 283025-1

The mating connector is not included in the delivery contents. This can be delivered by Rexroth on request.
Connector for Solenoids

DEUTSCH DT04-2P-EP04, 2-pin
molded, without bidirectional suppressor diode
(standard) P

Type of protection according to DIN/EN 60529:
IP67 and IP69K

Circuit diagram symbol
without bidirectional suppressor diode

Mating connector
DEUTSCH DT06-2S-EP04
Rexroth mat. no. R902601804

Consisting of:
- 1 case DT06-2S-EP04
- 1 wedge W2S
- 2 female connectors 0462-201-16141

The mating connector is not included in the delivery contents. This can be delivered by Rexroth on request.

Note for round solenoids:
The position of the connector can be changed by turning the solenoid body.

Proceed as follows:
- 1. Loosen fixing nut (1)
- 2. Turn the solenoid body (2) to the desired position.
- 3. Tighten the fixing nut
 Tightening torque of fixing nut: 5±1 Nm
 (width across the flats WAF 26, 12kt DIN 3124)
Installation Notes

General
During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the system may empty via the hydraulic lines.

The case drain in the case interior must be directed to the tank via the highest tank port (T₁, T₂). The minimum suction pressure at port S must not fall below 0.8 bar absolute (without charge pump) or 0.6 bar (with charge pump).

In all operational conditions, the suction line and case drain line must flow into the tank below the minimum fluid level.

Installation position
See examples below. Additional installation positions are available upon request.

Below-tank installation (standard)
Pump below the minimum fluid level of the tank.
Recommended installation positions: 1 and 2.

Above-tank installation
Pump above the minimum fluid level of the tank.
Observe the maximum permissible suction height \(h_{\text{S max}} = 800 \text{ mm} \).

The version A11VLO (with charge pump) is not designed for installation above the tank.
Recommendation for installation position 7 (shaft up): A check valve in the case drain line (opening pressure 0.5 bar) can prevent the case interior from draining.

For control options with pressure control, displacement limiters, HD and EP control, the minimum displacement setting must be \(V_g \geq 5\% V_{g \text{ max}} \).

\[h_{\text{S max}} = 800 \text{ mm}, h_{\text{min}} = 200 \text{ mm}, h_{\min} = 100 \text{ mm}, SB = \text{Silencer plate (baffle plate)} \]

When designing the tank, ensure adequate space \(a_{\text{min}} \), between the suction line and the case drain line to prevent the heated, returned fluid from being directly drawn back out.

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Air bleeding</th>
<th>Filling</th>
<th>Installation position</th>
<th>Air bleeding</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_1)</td>
<td>(S + T_1)</td>
<td>5</td>
<td>(L_1 + L_2)</td>
<td>(L_2 (S) + L_1 (T_3))</td>
</tr>
<tr>
<td>2</td>
<td>(R)</td>
<td>(S + T_2)</td>
<td>6</td>
<td>(R + L_2)</td>
<td>(L_2 (S) + L_1 (T_2))</td>
</tr>
<tr>
<td>3</td>
<td>(T_1/T_2)</td>
<td>(S + T_1/T_2)</td>
<td>7</td>
<td>(L_1 + L_2)</td>
<td>(L_2 (S) + L_1 (T_1/T_2))</td>
</tr>
</tbody>
</table>
Installation Notes

Tank installation

Pump below the minimum fluid level in the tank.

\[h_{\text{max}} = 800 \text{ mm}, \quad h_{\text{min}} = 200 \text{ mm}, \quad h_{\text{min}} = 100 \text{ mm},\]

SB = Silencer plate (baffle plate)

When designing the tank, ensure adequate space \(a_{\text{min}}\) between the suction line and the case drain line to prevent the heated, returned fluid from being directly drawn back out.

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Air bleeding</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Ti</td>
<td>automatically via all open Ti, T2, R and S ports, though position below the hydraulic fluid level</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>
Notice
General Notes

- The A11VO pump is designed to be used in open circuits.
- Project planning, assembly and commissioning of the axial piston unit require the involvement of qualified personnel.
- The service line ports and function ports are only designed to accommodate hydraulic lines.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operational state of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Pressure ports:
 The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The data and notes contained herein must be adhered to.
- The following tightening torques apply:
 - Threaded hole for axial piston unit:
 The maximum permissible tightening torques $M_{G\ max}$ are maximum values for the threaded holes and must not be exceeded. For values, see the following table.
 - Fittings:
 Observe the manufacturer's instruction regarding the tightening torques of the used fittings.
 - Fixing screws:
 For fixing screws according to DIN 13, we recommend checking the tightening torque individually according to VDI 2230.
 - Locking screws:
 For the metal locking screws supplied with the axial piston unit, the required tightening torques of locking screws M_V apply. For values, see the following table.
- The product is not approved as a component for the safety concept of a general machine according to DIN EN ISO 13849.

<table>
<thead>
<tr>
<th>Thread size</th>
<th>Max. permissible tightening torque of the screw thread $M_{G\ max}$</th>
<th>Required tightening torque for locking screws M_V</th>
<th>WAF Hexagon socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12x1.5 DIN 3852</td>
<td>50 Nm</td>
<td>25 Nm</td>
<td>6 mm</td>
</tr>
<tr>
<td>M14x1.5 DIN 3852</td>
<td>80 Nm</td>
<td>35 Nm</td>
<td>6 mm</td>
</tr>
<tr>
<td>M22x1.5 DIN 3852</td>
<td>210 Nm</td>
<td>80 Nm</td>
<td>10 mm</td>
</tr>
<tr>
<td>M26x1.5 DIN 3852</td>
<td>230 Nm</td>
<td>120 Nm</td>
<td>12 mm</td>
</tr>
<tr>
<td>M33x2 DIN 3852</td>
<td>540 Nm</td>
<td>310 Nm</td>
<td>17 mm</td>
</tr>
</tbody>
</table>