Doing business in Spain? Interempresas Media is the key

En los ensayos demostrativos del proyecto se ha logrado un ahorro de agua de riego superior a 800 m3/ha y un 18% en fertilizantes

Plataforma para la gestión integral del cultivo de tomate de industria: SmarTom

Jesús Gil Soto

Responsable de proyectos de I+D+i del área de agricultura de Ctaex

01/06/2022

El objetivo general del proyecto es la optimización del uso de insumos en el cultivo de tomate de industria, mejora de la calidad y facilitar la gestión integral del ciclo de cultivo mediante una plataforma que dé soporte a la decisión en los procesos clave, permitiendo obtener información a tiempo real de procesos críticos: estado nutricional, riego, potencial productivo o estado de maduración.

foto

Los Grupos Operativos son elementos clave en el desarrollo de la Asociación Europea para la Innovación, en materia de agricultura productiva y sostenible. Son agrupaciones de actores de distintos perfiles del ámbito agroalimentario y/o forestal, que se asocian para conseguir una innovación, al objeto de resolver un problema o aprovechar una oportunidad, con el enfoque de acción conjunta y multisectorial.

Es en este marco en el que el Grupo Operativo Suprautonómico SMARTOM ha trabajado en un proyecto innovador para el desarrollo de una Plataforma para la gestión integral del cultivo del tomate, cofinanciado al 80% por el Fondo Europeo Agrícola de Desarrollo Rural (FEADER).

Este proyecto se ha llevado a cabo por varias entidades de tres comunidades autónomas. Ha estado coordinado por el Centro Tecnológico Nacional Agroalimentario (CTAEX) y en él han participado Soltel IT Solutions como representante de la agrupación, la cooperativa extremeña ACOPAEX, Ambling Ingeniería y Servicios, el Instituto Tecnológico de Galicia y Cartogalicia.

El objetivo general del proyecto es la optimización del uso de insumos en el cultivo de tomate de industria, mejora de la calidad y facilitar la gestión integral del ciclo de cultivo mediante una plataforma que dé soporte a la decisión en los procesos clave, permitiendo obtener información a tiempo real de procesos críticos: estado nutricional, riego, potencial productivo o estado de maduración. Para ello, se ha llevado a cabo la integración de tecnologías de teledetección de alta resolución para monitorización de cultivos basadas principalmente en el control de suelo y cultivo a partir de sensorización y sistemas de adquisición de imágenes.

foto
Captura de imagen hiperespectral.

Control del riego

Por un lado se ha instalado una red de sensores de diferente índole, tanto capacitivos como de matriz granular, que miden a tiempo real diferentes parámetros como humedad de suelo, temperatura, conductividad eléctrica y parámetros agroclimáticos registrados con una estación portátil. Los datos obtenidos se envían por GPRS a tiempo real. Esta información, combinada con los datos obtenidos a partir del análisis de imágenes de alta resolución obtenidas con cámara hiperespectral a pie de campo y con vuelos de vehículos aéreos no tripulados, ha permitido el control del riego en una parcela piloto optimizando los aportes de agua. Para el vuelo de los drones se ha desarrollado en el proyecto un hangar autónomo donde aterriza y despega el vehículo además de realizar la descarga de datos y carga de baterías.

foto

Vuelo de dron en parcela piloto.

Monitorización directa de planta y suelo

Por otro lado se ha utilizado tecnología hiperespectral para la monitorización directa de planta y suelo, a partir de la captura de imágenes y del desarrollo de un modelo matemático calibrado y entrenado con muestras analizadas en laboratorio y las imágenes tomadas durante dos campañas. Las imágenes hiperespectrales se adquirieron con una cámara hiperespectral Specim IQ (Oulu, Finlandia), con generación de hipercubos con resolución espacial de 512 píxeles. La resolución espectral ha sido de 204 bandas distribuidas a intervalos equidistantes entre 400 y 1000 nm. La cámara también tiene capacidad para el registro de las coordenadas GPS de cada captura y éstas se almacenaron con los metadatos de cada hipercubo. Dentro de cada sesión, se tomó una imagen con un objetivo de referencia hecho de teflón y suministrado por el fabricante. Este blanco permitía a la cámara registrar el espectro de cada punto en unidades de reflectancia relativa. El resto de las condiciones de captura (distancia de adquisición, geometría de medición, tiempo de exposición...) se fijaron para asegurar la repetibilidad entre las diferentes sesiones de captura. Estas sesiones desde mayo a agosto en dos campañas consecutivas y se realizaron en dos parcelas piloto con dos localizaciones diferentes, tomándose imágenes de suelo y planta tanto para el análisis de hoja como de fruto para su análisis en laboratorio por métodos de referencia. Todo el algoritmo de apertura de hipercubos, segmentación, tratamiento espectral, creación de los modelos de aprendizaje y exportación de resultados se programó bajo MATLAB R2018a (The MathWorks, USA).

foto
Figura 1.
En primer lugar, se dividieron las plantaciones según factores agronómicos. Estos sectores se caracterizaron según sus coordenadas GPS y se programó un algoritmo para asignar automáticamente cada una de las imágenes en una ortofoto de la parcela. El programa creado asignó cada imagen incluyendo el número de muestra y el tipo de tratamiento agronómico con una escala de colores (Figura 1).

A continuación, se estableció un criterio de segmentación para diferenciar los distintos elementos presentes en la imagen. En escenas sencillas, como las de las imágenes adquiridas en el laboratorio, se suelen seleccionar una o dos longitudes de onda y se establecen los límites del umbral. Sin embargo, en entornos reales, como en este caso, los objetos a identificar pueden estar parcialmente ocultos, la iluminación no es consistente y pueden aparecer otros elementos. Se aplicó un análisis discriminante lineal por pasos (FS-LDA), se comprobó su idoneidad y se implementó en el algoritmo de procesamiento. La metodología desarrollada no sólo diferenció los elementos de la imagen, sino que también identificó con éxito el estado de maduración de los tomates (Figura 2).

foto
Figura 2.
La última de las tareas realizadas con las imágenes hiperespectrales fue predecir la composición química a partir de las imágenes. A partir de los resultados de los análisis químicos obtenidos por CTAEX, se creó una compleja batería espectral en la que se conocía la pertenencia a cada elemento de la imagen y la concentración en los analitos medidos para cada muestra. Utilizando técnicas avanzadas de preprocesamiento espectral y quimiometría, fue posible predecir estos parámetros obteniendo un coeficiente de determinación en torno a 0,85. Además, y aprovechando la característica de poder evaluar cada punto de la imagen, el módulo de procesado implementó la posibilidad de obtener imágenes de tipo Chemical Imaging, en las que se puede conocer tanto la concentración como la distribución espacial del parámetro en una determinada escala de colores (Figura 3). Esto nos permite conocer a tiempo real y de manera georreferenciada si en una zona determinada de la parcela puede existir un déficit o exceso de algún nutriente, con la finalidad de realizar ajustes en la fertilización.
foto
Figura 3.

Conclusiones

Con estos resultados se puede concluir que, a partir de una imagen tomada en campo y cargada en la plataforma, rápidamente se puede conocer el estado del cultivo desde el suelo hasta el fruto, teniendo el control de los procesos clave para garantizar la calidad y productividad. Toda la información se procesa a partir de algoritmos específicos desarrollados en el proyecto y se muestra en cuadros de mando donde se puede consultar de un vistazo el estado de cada parcela en cuanto a humedad, concentración de nutrientes, maduración y producción prevista, para ayudar en la toma de decisiones de manejo y logística de cosecha (Imagen: 'Cuadros de mando').

foto
Imagen: cuadros de mando.

Como resumen, los trabajos realizados con la integración de diferentes tecnologías en la plataforma SMARTOM, se puede conseguir una mejora en la gestión de las explotaciones a partir de la obtención de información a tiempo real sobre parámetros clave en el cultivo como la fertilización, riego o maduración. Toda la información se procesa automáticamente de forma que el usuario recibe el resultado de manera visual y sencilla sin necesidad de tener que interpretar los datos o las imágenes obtenidas.

En los ensayos demostrativos del proyecto se ha logrado un ahorro de agua de riego superior a 800 m3/ha y un 18% en fertilizantes. Además, a partir del análisis de las imágenes se puede conocer la estimación de producción en kg/ha de forma predictiva y el porcentaje de fruto rojo/verde en cada momento del ciclo de cultivo.

foto

Comentarios al artículo/noticia

Nuevo comentario

Atención

Los comentarios son la opinión de los usuarios y no la del portal. No se admiten comentarios insultantes, racistas o contrarios a las leyes vigentes. No se publicarán comentarios que no tengan relación con la noticia/artículo, o que no cumplan con el Aviso legal y la Política de Protección de Datos.

Advertencias Legales e Información básica sobre Protección de Datos Personales:
Responsable del Tratamiento de sus datos Personales: Interempresas Media, S.L.U. Finalidades: Gestionar el contacto con Ud. Conservación: Conservaremos sus datos mientras dure la relación con Ud., seguidamente se guardarán, debidamente bloqueados. Derechos: Puede ejercer los derechos de acceso, rectificación, supresión y portabilidad y los de limitación u oposición al tratamiento, y contactar con el DPD por medio de lopd@interempresas.net. Si considera que el tratamiento no se ajusta a la normativa vigente, puede presentar una reclamación ante la AEPD.

Suscríbase a nuestra Newsletter - Ver ejemplo

Contraseña

Marcar todos

Autorizo el envío de newsletters y avisos informativos personalizados de interempresas.net

Autorizo el envío de comunicaciones de terceros vía interempresas.net

He leído y acepto el Aviso Legal y la Política de Protección de Datos

TOP PRODUCTS

ENLACES DESTACADOS

Bejo Ibérica, S.L.U.Eurofruit: 29/09 al 02/10-2022

ÚLTIMAS NOTICIAS

OPINIÓN

OTRAS SECCIONES

SERVICIOS