FY72 - Futur Energy

En Contraportada | Back Cover Story www.futurenergyweb.es 10 FuturEnergy | Julio/Septiembre July/September 2020 se puede determinar el número de cadenas. En comparación con el módulo G1, el Hi-MO 5 mantiene el mismo número de cadenas. Sin embargo, el número de cadenas individuales para un módulo G12 se reducirá en una unidad. Por lo tanto, la potencia por cadena del Hi-MO 5 será un 30,5%mayor que la del módulo G1 y un 12,1%mayor que para el módulo G12 (ver Tabla 2). Ahorro de costes en soportes Para soportes de dos filas en horizontal, uno puede soportar dos cadenas de módulos. Cuanto mayor es la potencia de la cadena, mayor es la potencia de los módulos en el soporte. El soporte puede soportar más módulos extendiendo el raíl, en este caso el incremento en el consumo de acero es menor que el incremento de potencia de cada cadena, por tanto se puede reducir el coste por vatio del soporte. De acuerdo con el peso del módulo y la presión de la nieve y el viento, se puede calcular el consumo de soportes. Para la misma matriz de 3,44 MW, el consumo total de acero para soportes del Hi-MO5 es un 9,9% inferior al del módulo G1 y un 2,5% inferior al del módulo G12, lo que conlleva un ahorro de costes similar en soportes: el coste de los soportes para el Hi-MO5 es 0,37 cent$/W menor que para el módulo G1 y 0,08 cent$/Wmenor respecto al G12 (ver Tabla 3). Compared with a G1 module, Hi-MO 5 maintains the same number of strings. However, the number of single strings for a G12 module reduces by one. This means that the string power of Hi-MO 5 will be 30.5% higher than a G1 module and 12.1% higher than a G12 module (Table 2). Savings on bracket costs For two rows of brackets in a horizontal configuration, one bracket can support two strings of modules. The higher the single string power, the higher the module power on the bracket. The bracket can support a higher module power by extending the rail. In this case, the increased steel consumption is less than the increase of the single string power, thus the bracket cost per watt is reduced. Depending on the module weight and the ambient snow and wind pressure, the bracket consumption can be calculated. For the same 3.44 MW array, the total steel consumption of the brackets for Hi-MO 5 is 9.9% lower than for a G1 module and 2.5% less compared to a G12 module. This also results in the same level of cost saving for the brackets themselves: the bracket cost for the Hi-MO 5 is 0.37 US cents/W less compared to the G1 module and 0.08 US cents/W less than the G12 (Table 3). Savings on pile foundation costs Depending on the mechanical load and ambient conditions, the steel consumption of the brackets and number of pile foundations required can be determined. In this design scenario, the number of pile foundations for an Hi-MO 5 is one more than that for a G12 however, as there are fewer brackets overall, the total number of array pile foundation is also reduced. The cost of Hi-MO 5 is 0.35 US cents/W lower compared to the G1 and 0.27 US cents/W less than the G12 (Table 4). Savings on land costs The PV array can be formed by arranging the brackets according to the array space available, thus calculating the area of the array. Firstly, the efficiency improvement of the Hi-MO 5 reduces the total surface area of the module and array gap. Secondly, an increase in single string power will reduce the number of brackets and the bracket gap area. Table 5 shows that the land cost of the Hi-MO 5 is 4.6% less than that of a G1 module and 2.1% less than that of a G12. The detailed cost savings will depend on the fees for land occupation, rent and usage. In this case, an annual rent of US$35/m2 is used for the calculation. Savings on cable and combiner box costs The combiner box is used to join 24 string modules together. By increasing the single string power, fewer combiner boxes are required. The PV cable is used to connect each string to the combiner box, with a DC cable for connecting the combiner box and inverter. Due to the decrease in module strings, combiner boxes and array area, Tipo de módulo Module type Hi-MO 5 G1 G12 Potencia del módulo Module power (W) 535 410 495 Voc(V) 49.4 50.0 51.3 Isc(A) 12.9 9.6 11.5 Número de strings No. of strings 28 28 27 Potencia por string Single string power (kW) 14.98 11.48 13.365 Mejora de potencia del Hi-MO 5 Base Power advantage of Hi-MO 5 Baseline 30.5% 12.1% Tabla 2. | Table 2. Tipo de módulo Module type Hi-MO 5 G1 G12 Número de cimentaciones pilote | No. of pile foundations 9 8 9 Espacio entre cimentaciones pilote (m) Space between pile foundations (m) 3.9 4.0 3.7 Número total de cimentaciones pilote de la matriz Total no. of array pile foundations 1,035 1,200 1,161 Coste de cimetaciones pilote | Cost of pile foundations ($/W) 0.022 0.026 0.025 Porcentaje de ahorro por cimentación pilote del Hi-MO 5 Base Hi-MO 5 cost saving ratio per pile foundation Baseline 13.8% 10.8% Ahorro de costes por cimentación pilote del Hi-MO 5 Base Hi-MO 5 cost saving per pile foundation ($ cents/W) Baseline 0.35 0.27 Tabla 4. | Table 4. Tipo de módulo Module type Hi-MO 5 G1 G12 Disposición de módulos en soporte simple Arrangement of modules on a single bracket 2 x 28 2 x 28 2 x 27 Consumo de acero por soporte simple Single bracket steel consumption (t) 0.825 0.703 0.754 Número de soportes por matriz | No. of brackets per array 115 150 129 Consumo total de acero | Total steel consumption (t) 94,899 105,377 97,317 Porcentaje de ahorro en el consumo de acero Base Saving in steel consumption Baseline 9.9% 2.5% Coste del soporte | Bracket cost ($/W) 0.033 0.037 0.034 Ahorro de costes por soporte de Hi-MO 5 (cent$/W) Base Hi-MO 5 bracket cost savings (US Cents/W) Baseline 0.37 0.08 Tabla 3. | Table 3.

RkJQdWJsaXNoZXIy Njg1MjYx